研究生: |
林永昌 Yung-Chang Lin |
---|---|
論文名稱: |
由新穎的製程方式得到不同晶相之砷化鎵奈米線與其電學性質量測 Transport properties of different orientational GaAs nanowires |
指導教授: |
邱博文
Po-Wen Chiu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 砷化鎵 、奈米線 、奈米碳管 |
外文關鍵詞: | GaAs, nanowire, carbon nanotube |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
固態電子元件的縮小化,促使科學家們開始著手進行低維度奈米結構之研究,其中一維奈米線的特殊結構,以及其在光學與電學上的特性,是我們有興趣的研究方向,製備奈米線的方式有許多種,一般最常用的方法是VLS成長機制,可得到軸向為單晶排列的標準奈米線結構,但由於VLS的高溫製程,將使得奈米線直徑約為20 ~ 100 nm,且表面將包覆著緻密的氧化層,影響電學性質的量測。而本實驗將焦點放在砷化鎵材料之上,經由理論計算分析砷化鎵材料在三維與一維結構時之電子能帶改變,發現一維結構在不同傳輸晶相時,具有不同的電子能帶,亦可預測其電流特性將隨之改變。
本實驗採用德國合作夥伴以分子束磊晶方式成長的砷化鎵試片,整合由下而上成長細小的奈米碳管與由上而下的垂直蝕刻技術,在試片上隨機吸附多壁奈米碳管,並將其做為垂直氣相離子蝕刻遮罩,蝕刻之後便可成功地得到砷化鎵奈米線,並組成奈米線電晶體,有別於傳統VLS成長奈米線的技術,經由此製備方式可免除經由VLS高溫成長時在奈米線表面產生的氧化層,同時多壁碳管的直徑約為5 ~ 10 nm左右,在試片表面上隨機分佈並蝕刻之後,可得到直徑小於10 nm的一維砷化鎵奈米線,除此之外電子在軸向的傳輸晶相亦能隨著多壁碳管的分佈方向而改變,這些特點均為VLS製備奈米線技術所無法達到的。
成功的製備直徑10 nm以下的砷化鎵奈米線之後,將奈米線以不同傳輸晶相做討論,並在室溫之下的電性量測,發現不同傳輸晶相的奈米線電晶體具有特殊的整流曲線,是為探討電子在一維結構中傳輸的新發現,根據此新穎技術,未來將能衍伸出許多研究發展方向,在低溫環境的量測能更完整地分析奈米線電晶體特性,此外在交錯的奈米線結構中更可在同質材料上建構出異質介面,可更深入地探討一維奈米線傳輸晶相與電流特性之關係。
[1] 朱漢義, “First-principles investigation on band structure properties of algainn,”
Master’s thesis, 國立彰化師範大學光電科技研究所, 2005.
[2] J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor tridoe,”
Phys. Rev., vol. 74, p. 230, 1948.
[3] C. Kittel, Introduction to Solid State Physics. WILEY, 2005.
[4] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and
H. Yan, “One-dimensional nanostructures: Synthesis, characterization, and applications,”
Adv. Mater., vol. 15, p. 353, 2003.
[5] D. J. Bishop, J. C. Licini, and G. J. Dolan, “Lithium quench-condensed microstructures
and the AharonovBohm effect,” Appl. Phys. Lett., vol. 46, p. 1000,
1985.
[6] M. Walther, “Carrier capture and quantum confinement in GaAs/AlGaAs quantum
wire lasers grown on v-grooved substrates,” Appl. Phys. Lett., vol. 60, p.
521, 1992.
[7] G. Fasol, “Applied physics - nanowires: Small is beautiful,” Science, vol. 280,
p. 545, 1998.
[8] L. N. Pfeiffer, R. de Picciotto, K. W. West, K. W. Baldwin, and C. H. L.
Quay, “Ballistic hole transport in a quantum wire,” Appl. Plys. Lett., vol. 87,
p. 073111, 2005.
[9] Y. Yin, Y. Lu, and Y. Xia, “Assembly of monodispersed spherical colloids
into one-dimensional aggregates characterized by well-controlled structures and
lengths,” J. Mater. Chem, vol. 11, p. 987, 2001.
[10] R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal
growth,” Appl. Phys. Lett., vol. 4, p. 89, 1964.
[11] Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic
devices,” Materials Today, vol. 9 (10), p. 18, 2006.
[12] F. Qian, Y. Li, S. Gradecak, D. Wang, C. J. Barrelet, and C. M. Leiber,
“Gallium Nitride-based nanowire radial heterostructures for nanophotonics,”
Nano Lett., vol. 4, p. 1975, 2004.
[13] F. Qian, S. Gradecak, Y. Li, C.-Y. Wen, and C. M. Leiber, “Core/multishell
nanowire heterostructure as multicolor, high-efficiency light-emitting diodes,”
Nano Lett., vol. 5, p. 2287, 2005.
[14] F. Patolsky, “Electrical detection of single viruses,” PNAS, vol. 101, p. 14017,
2005.
[15] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev, vol.
136, p. 864, 1964.
[16] W. Kohn and L. J. Sham, “Self-consistent equations including exchange and
correlation effects,” Phys. Rev., vol. 140, p. A1133, 1965.
[17] ——, “Quantum density oscillations in an inhomogeneous electron gas,” Phys.
Rev., vol. 137, p. A1697, 1965.
[18] F. Manghi, G. Riegler, and C. M. Bertoni, “Band-structure caculation for GaAs
and Si beyond the local-density approoximation,” Phys. Rev. B, vol. 31, p.
3680, 1985.
[19] I. N. Remediakis and E. Kaxiras, “Band-structure caculations for semiconductors
within generalized-density-functional theory,” Phys. Rev. B, vol. 59, p.
5536, 1999.
[20] B. J. Ohlsson, “Size-, shape-, and position-controlled GaAs nono-whiskers,”
Appl. Phys. Lett., vol. 79, p. 3335, 2001.
[21] A. I. Persson, M. W. Larsson, S. Stenstrom, B. J. Ohlsson, L. Samuelson, and
L. R. Wallenberg, “Solid-phase diffusion mechanism for GaAs nanowire growth,”
Nature material, vol. 3, p. 677, 2004.
[22] J. C. Harmand and G. Patriarche, “Analysis of vapor-liquid-solid mechanism in
Au-assisted GaAs nanowire growth,” Appl. Phys. Lett., vol. 87, p. 203101, 2005.
[23] X. Duan and C. M. Lieber, “General synthesis of compound semiconductor
nanowires,” Adv. Mater., vol. 12, p. 298, 2000.
[24] X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosohide
nanowires as building blocks for nanoscale electronic and optoelectronic devices,”
Nature, vol. 409, p. 66, 2001.
[25] Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, “Gallium Nitride nanowire
nanodevices,” Nano Lett., vol. 2, p. 101, 2002.
[26] Y. Sun, H.-S. Kim, E. Menard, S. Kim, I. Adesida, and J. A. Roger, “Printed
arrays of aligned GaAs wires for flexible transistors, diodes, and circuits on
plastics substrates,” Small, vol. 2, p. 1330, 2006.
[27] Y. Huang, “Logic gates and computation from assembled nanowire building
blocks,” Science, vol. 294, p. 1313, 2001.
[28] Z. Zhong, “Nanowire crossbar arrays as address decoders for integrated nanosystems,”
Science, vol. 302, p. 1377, 2003.
[29] X. Duan, “High-performance thin-film transistors using semiconductor
nanowires and nanoribbons,” Nature, vol. 425, p. 274, 2003.
[30] X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically
driven lasers,” Nature, vol. 42, p. 241, 2003.
[31] Y. Huang, X. Duan, and C. M. Lieber, “Nanowires for integrated mulitcolor
nanophotonics,” Small, vol. 1, p. 142, 2005.
[32] H. Okada, S. i. Shikata, and H. Hayashi, “Electrical characteristic and reliability
of Pt/Ti/Pt/Au ohmic contacts to p-type GaAs,” Jpn. J. Appl. Phys., vol. 30, p.
558, 1991.
[33] M. Luisier, A. Schenk, and W. fichtner, “Atomistic simulation of nanowires
in the sp3d5s* tight-binding formalism: From boundary conditions to strain
calculations,” Phys. Rev. B, vol. 74, p. 205323, 2006.
[34] M. P. Persson and H. Q. Xu, “Electronic structure of [100]-orientated freestanding
semiconductor nanowires,” Nano Lett., vol. 4, p. 2409, 2004.
[35] Y.-J. Ko, M. Shin, S. Lee, and K. W. Park, “Effects of atomistic defects on
coherent electron transmission in Si nanowires: Full band calculation,” J. Appl.
Phys., vol. 89, p. 374, 2001.
[36] K. Nehari, N. Cavassilas, and F. Michelini, “Full-band study of current across
Silicon nanowire transistors,” Appl. Phys. Lett., vol. 90, p. 132112, 2007.
[37] Y. Cui, X. Duan, J. Hu, and C. M. Leiber, “Doping and electrical transport in
Silicon nanowires,” J. Phys. Chem. B, vol. 104, p. 5213, 2000.
[38] S.-W. Chung, J.-Y. Yu, and J. R. Heath, “Silicon nanowire devices,” Appl.
Phys. Lett., vol. 76, p. 2068, 2000.
[39] Y.-H. Lee, J.-M. Yoo, and D. Park, “Co-doped TiO2 nanowire electric field-effect
transistors fabricated by suspended molecular template method,” Appl. Phys.
Lett., vol. 86, p. 033110, 2005.
[40] D. Wang, J. G. Lu, C. J. Otten, and W. E. Buhro, “Electrical transport in
boron nanowires,” Appl. Phys. Lett., vol. 83, p. 5280, 2003.
[41] Z. Fan and J. G. Lu, “Electrical properties of ZnO nanowire field effect transistors
characterized with scanning probes,” Appl. Phys. Lett., vol. 86, p. 032111,
2005.
[42] Y. W. Heo, L. C. Tien, D. P. Norton, and S. J. Pearton, “Pt/ZnO nanowire
Schottky diodes,” Appl. Phys. Lett., vol. 85, p. 3107, 2004.
[43] S. M. Sze, Physics of Semiconductor Devices. Wiley, New York, 1981.
[44] J. Appenzeller, “Tunneling versus thermionic emission in one-dimensional semiconductors,”
Phys. Rev. Lett., vol. 92, p. 048301, 2004.
[45] Z. Y. Zhang, “Current-voltage characteristics and parameter retrieval of semiconducting
nanowires,” Appl. Phys. Lett., vol. 88, p. 073102, 2006.
[46] Y. Meir and N. S. Wingreen, “Landauer formula for the current through an
interacting electron region,” Phys. Rev. Lett., vol. 68, p. 2512, 1992.