研究生: |
沙宇軒 |
---|---|
論文名稱: |
以分子動力學模擬探討液態甲醇與甲醇水溶液之一些物理性質 Molecular Dynamics Simulations of Several Physical Property of Liquid Methanol and Mixed Water-Methanol |
指導教授: | 潘欽 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 分子動力學模擬 、液態甲醇 、甲醇水溶液 |
外文關鍵詞: | Molecular Dynamics Simulations, Liquid Methanol, Mixed Water-Methanol |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
在研究奈米科學的理論時不但許多物理現象可能會違背巨觀世界下的理論,而且在實驗量測上也頗具困難度,分子動力學模擬成為奈米科學重要的研究工具。另一方面,在能源短缺的今日,燃料電池的研究成為一熱門課題,其中又以直接甲醇燃料電池(DMFC)高能量密度之特性而備受矚目,所以當DMFC發展越趨向微小化,其燃料—甲醇水溶液在微觀尺度下的性質研究就更顯重要。
本研究以分子動力學理論為基礎進行程式設計,模擬甲醇分子在常溫液態與超臨界狀態下均質系統中下相關的物質特性,例如系統總能量、逕向結構分佈函數、自我擴散係數、氫鍵配位數等,並與文獻中的理論分析或實驗結果做驗證,提出物理解釋與探討。之後又將甲醇分子與水分子混合成甲醇水溶液,模擬其系統總能量以及氧原子和氫原子間的逕向結構分佈函數,希望對於甲醇水溶液中分子氫鍵的現象提出部份觀查和解釋。
模擬結果發現甲醇液體的擴散速率與隨溫度增加而升高,且確認分子間氫鍵作用距離約為1.86 ;隨模擬溫度的提高,分子間氫鍵數呈現下降趨勢,於超臨界狀態下氫鍵效應幾乎完全消失。此外,甲醇水溶液會因莫耳分率越高而總能量越低,根據氫氧原子間逕向結構分佈函數的分析,認為甲醇與水混合時可能沒有唯一特定的氫鍵距離。
參考文獻
[1] 賴秋助、顏宇欣,“微小型直接甲醇燃料電池系統設計”,工業材料,第193期,第120-126頁,2003。
[2] 盧敏彥、黃俊傑、張美元,“微型燃料電池—直接甲醇燃料電池”,化工技術,第10卷第6期,第152-164頁,2002。
[3] Shigeo Maruyama,W. J. Minkowycz and E. M. Sparrow (Eds), Advan
ces in Numerical Heat Transfer,vol. 2, Chap. 6, pp. 189-226, Taylor & Francis, New York, 2000.
[4] Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A. H. and Teller E.“Equation of state calculations by fast computing machines”, J. Chem. Phys., vol. 21, p1087-1092, 1953.
[5] Alder B. J. and Wainwright T. E. (1957).“Phase transition for a hard sphere system,” J. Chem. Phys., vol. 27, p1208-1209.
[6] 倪銘良,“燃料電池發展的新趨勢”,能源季刊,第32卷第2期,第102-114頁,2002。
[7] Rahman A. , “Correlations in the motion of atoms in liquid argon,” Phys. Rev., vol. 136, p405-411, 1964.
[8] Andersen H. C., “Molecular dynamics at constant pressure and/or temperature,” J. Chem. Phys., vol. 72, p2384-2393, 1980.
[9] Berendsen J. K. C., Postma J. P. M., van Gunsteren W. F., DiNola A. and Haak J. R. .“Molecular dynamics with coupling to an external bath,” J. Chem. Phys., vol. 81, p3684-3690, 1984.
[10] Nose’ S. ,“A unified formulation of the constant temperature molecular dynamics methods,” J. Chem. Phys., vol. 81, p511-519 ,1984.
[11] Hoover W. G. ,“Canonical dynamics: equilibrium phase-space distribution,” Phys. Rev. A., vol. 31, p1695-1697, 1985.
[12] Parrinello M. and Rahman A. ,“Strain fluctuations and elastic constants,” J. Chem. Phys., vol. 76, p2662-2666, 1982.
[13] Jorgensen W.L. , Structure and Properties of Liquid Methanol, American Chemical Society, July 2, 1979
[14] Jorgensen W. L. , Optimized Intermolecular Potential Functions for Liquid Alcohols, J. Phys. Chem., vol. 90, pp. 1276-1284, 1986.
[15] Berendsen H. J. C., Postma J. P. M., Van Gunsteren W. F. and Hermans J. , “Interaction models for water in relation to protein hydration,” In: Pullman B (ed) Intermolecular Forces. Riedel, Dordrecht, p331-342, 1981.
[16] Berendsen H. J. C., Grigeira J. R. and Straatsma T. P. “The missing term in effective pair potentials,” J. Phys. Chem., vol. 91, p6269-6271, 1987.
[17] Handgraaf J. W. et al. , Ab initio molecular dynamics study of liquid methanol, / Chemical Physics Letters 367 ,617–624, 2003.
[18] Shevade A. V., Shaoyi Jiang and Keith E. Gubbins, Adsorption of water-methanol mixtures in carbon and alumino-silicate pores: a molecular simulation study, revised version accepted 8 July, 1999.
[19] Brodskaya E. N., Molecular–Dynamic Simulation
of Mixed Water–Methanol Clusters: 1. Local Structure, COLLOID JOURNAL Vol. 63 No. 1 2001.
[20] Brodskaya E. N., Molecular–Dynamic Simulation of Mixed Water–Methanol Clusters: 2. Surface Potential, COLLOID JOURNAL Vol. 63 No. 1 2001
[21] Hawlicka E. and Dorota S.W., Effect of sodium halides on the structure of mrthanol-water mixture—MD simulation studies, journal of Molecular Liquids 98-99,355-365,2002
[22] Erik J. W. Wensink and Alex C. Hoffmann, Dynamic properties of water/alcohol mixtures studied by computer simulation, JOURNAL OF CHEMICAL PHYSICS Vol. 119 No. 14, 8 October, 2003.
[23] Maruyama S. (2000). “Molecular dynamics method for microscale heat transfer,” vol. 2, Chap. 6, p189-226, Advances in Numerical Heat Transfer, W. J. Minkowycz and E. M. Sparrow (Eds), Taylor & Francis, New York, 2000.
[24] 楊宗翰, “Molecular Dynamics Simulations of Liquid Water Film Evaporation and Physical Processes of Nano Water Droplet on an Isothermal Platinum Surface ,” 國立清華大學工程與系統科學所碩士論文, 2004.
[25] Haile J. M., “Molecular Dynamics Simulation. Elementary Methods ,” John Wiley & Sons, New York, 1992.
[26] Sadus R. J., “Molecular Simulation of Fluids Theory, Algorithm and Object-Orientation,” Elsevier Science, 1999.
[27] 吳逸文,“以分子動力學模擬L-J(12-6)液體之均質成核沸騰和薄膜蒸發,” 國立清華大學工程與系統科學所碩士論文, 2002.
[28] Rapaport D. C.,“The Art of Molecular Dynamics Simulation,” Cambridge University Press, Cambridge, 1995.
[29] Hurle R.L., L.A. Woolf, Aust. J. Chem. (1980) 1947.
[30] Krynicki K., Green C. D. and Sawyer D. W.. “Pressure and temperature dependence of self-diffusion in water,” Faraday. Discuss. Chem. Soc., vol. 66, p199-207, 1978.
[31] Robert D. Goodwin, “Methanol Thermodynamic Properties From 176 to 673K at Pressures to 700 Bar”, June 11,1987.