簡易檢索 / 詳目顯示

研究生: 朱舒蔓
Chu, Shu-Man
論文名稱: 鐵-組氨酸奈米載體結合Methotrexate作為癌症複合療法之應用
Application of Fe-L-histidine Nanoparticles Combined with Methotrexate for Combination Therapy
指導教授: 宋信文
Sung, Hsing-Wen
口試委員: 邱信程
Chiu, Hsin-Cheng
糜福龍
Mi, Fwu-Long
林鈺容
Lin, Yu-Jung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 30
中文關鍵詞: 奈米載體葉酸抗結劑複合療法藥物載體組氨酸
外文關鍵詞: nanoparticles, methotrexate, combination therapy, drug carriers, histidine
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據世界衛生組織國際癌症研究機構(International Agency for Research on Cancer, IARC)於2020年發表的全球癌症負擔數據中顯示:乳癌已成為全球最常見的癌症。其中,針對浸潤癌與癌細胞轉移的乳癌,常結合化學治療的方式控制腫瘤大小。然而化學療法藥物缺乏專一性,因此治療過程常伴隨嚴重的副作用。研究顯示:histidine的代謝可以與抗癌藥物Methotrexate (MTX)行協同作用增強其效能,並在降低MTX的劑量下維持良好的療效。故本篇論文展示一種表面具尖刺狀的Fe-L-histidine奈米載體,它由硫酸亞鐵與histidine藉由超音波震盪的方式反應而成。我們藉由SEM、TEM觀測奈米載體的型態,並藉由ICP-MS與元素分析儀分析載體組成,其中histidine成分佔奈米載體的1.5%。同時,利用靜電交互作用的方式裝載MTX於載體,其藥物包覆效率達33%,藥物承載率達25%。體外實驗結果顯示,奈米載體具有爆發性釋放藥物的性質。由於該性質不利於藥物濃度的控制,故後續實驗改採Fe-L-histidine奈米載體添加MTX的方式進行探討。由螢光染色圖觀測細胞吞噬奈米載體的效率:大部分的載體在與細胞共培養24小時後可有效被吞噬。並觀測模擬生理狀況的奈米載體降解情形,結果顯示:奈米載體的外觀在第七天便已有明顯的破壞。接著藉由CellTiter-Glo®檢測試劑與Live and Dead細胞染色實驗,證實100 µg/ml Fe-L-histidine奈米載體添加44 nM MTX的組別相較於奈米載體與MTX的組別,具有較高的細胞毒性。最後,我們進行小鼠乳癌腫瘤治療,結果顯示:100 µg/ml Fe-L-histidine奈米載體添加每公斤小鼠體重5 mg的 MTX組別腫瘤生長趨勢與控制組並無明顯差異,這可能是因為奈米載體降解速度緩慢,所釋放的histidine難以與注射進小鼠體內的MTX行協同作用,以及MTX的治療劑量過低,其協同作用無法顯著抑制腫瘤生長的緣故。綜上述實驗結果,我們會針對載體降解速度以及其histidine與MTX行協同作用的最佳比例進行後續的實驗探討。


    Breast cancer is one of the most commonly occurring cancer cases in the world. Patients with invasive breast cancer or reginal metastasis often treat with chemotherapy. However, chemotherapy has severe adverse effects owing to their lack of specificity. Recent studies have demonstrated that a combination of histidine with methotrexate (MTX), a kind of drug used in chemotherapy, can increase the efficacy of MTX by lowering the availability of tetrahydrofolate, and thus enable reduced dosing of this toxicants. In this study, we proposed a spiky Fe-L-histidine nanoparticles (NPs) which can be loaded with MTX via electrostatic interaction. The developed Fe-L-histidine NPs and MTX-loaded Fe-L-histidine NPs was characterized by SEM, TEM, DLS and FT-IR analysis. In vitro degradation and drug release was demonstrated through the simulated physiological conditions. Moreover, the cytotoxicity of the combination of MTX and Fe-L-histidine NPs is tested by CellTiter-Glo® assay using 4T1 cell lines, and the results disclosed that the combination of MTX and Fe-L-histidine NPs had higher cytotoxicity compared to MTX or Fe-L-histidine NPs. Though, there is no significant difference between the control group and the group of 100 µg/ml Fe-L-histidine NPs with 5 mg kg-1 MTX in the study of in situ vaccination. The reason might be the slow release of histidine due to the slow degradation, making it hard to perform the synergistic effect with MTX, and the reduced dosing of MTX might be too low for the therapy, leading to the synergistic effect not strong enough to inhibit the tumor growth. According to the observed results, we will focus on the degradation process of Fe-L-histidine NPs and optimize the ratio of the concentration of MTX and histidine to perform better synergistic effect in our future work.

    摘要 I 目錄 III 圖目錄 V 表目錄 VII 第一章 緒論 1 1.1 乳癌之簡介 1 1.2 乳癌治療之簡介 3 1.3 METHOTREXATE (MTX)作用機制之簡介 3 1.4 HISTIDINE與MTX的協同作用 5 1.5 鐵與組胺酸 (L-HISTIDINE)材料 6 1.6 研究目的與實驗設計 6 1.7 實驗流程設計圖 8 第二章 實驗材料與方法 9 2.1 實驗材料 9 2.2 FE-L-HISTIDINE 奈米載體的製備 9 2.3 FE-L-HISTIDINE奈米載體的特性測試 9 2.4 FE-L-HISTIDINE奈米載體吸附MTX 11 2.5藥物釋放體外實驗 11 2.6 細胞培養及毒性測試 12 2.7 4T1細胞對於FE-L-HISTIDINE奈米載體吞噬效果分析 12 2.8 LIVE AND DEAD細胞染色實驗 13 2.9 動物實驗 13 第三章 實驗結果與討論 15 3.1 FE-L-HISTIDINE之特性分析 15 3.2 吸附MTX的FE-L-HISTIDINE奈米載體之特性分析 17 3.3藥物包覆率(LOADING EFFICIENCY)與藥物承載率(LOADING CONTENTS)最佳化 18 3.4 藥物釋放實驗 20 3.4 FE-L-HISTIDINE與MTX細胞毒性實驗 20 3.5 4T1細胞對FE-L-HISTIDINE吞噬效果之分析 21 3.6 FE-L-HISTIDINE奈米載體與MTX之協同作用 23 第四章 結果與未來展望 27 第五章 參考文獻 28

    1. Harbeck, N., Penault-Llorca, F., Cortes, J. et al. (2019). Breast cancer. Nature Reviews Disease Primiers, 5, 66.
    2. Joshi, S., & Durden, D. L. (2019). Combinatorial approach to improve cancer immunotherapy: rational drug design strategy to simultaneously hit multiple targets to kill tumor cells and to activate the immune system. Journal of oncology, 2019.
    3. Early Breast Cancer Trialists' Collaborative Group. (2005). Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. The Lancet, 366(9503), 2087-2106.
    4. Vermund, H., & Gollin, F. F. (1968). Mechanisms of action of radiotherapy and chemotherapeutic adjuvants: a review. Cancer, 21(1), 58-76.
    5. Nicholson, R. I., & Johnston, S. R. (2005). Endocrine therapy–current benefits and limitations. Breast cancer research and treatment, 93(1), 3-10.
    6. Schirrmacher, V. (2019). From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment. International journal of oncology, 54(2), 407-419.
    7. Huennekens, F. M. (1994). The methotrexate story: a paradigm for development of cancer chemotherapeutic agents. Advances in enzyme regulation, 34, 397-419.
    8. Natale, R. B., Yagoda, A., Watson, R. C., Whitmore, W. F., Blumenreich, M., & Braun Jr, D. W. (1981). Methotrexate: an active drug in bladder cancer. Cancer, 47(6), 1246-1250.
    9. Farber, S. (1949). Some observations on the effect of folic acid antagonists on acute leukemia and other forms of incurable cancer. Blood, 4(2), 160-167.
    10. Matera, C., Gomila, A. M., Camarero, N., Libergoli, M., Soler, C., & Gorostiza, P. (2018). Photoswitchable antimetabolite for targeted photoactivated chemotherapy. Journal of the American Chemical Society, 140(46), 15764-15773.
    11. Koźmiński, P., Halik, P. K., Chesori, R., & Gniazdowska, E. (2020). Overview of dual-acting drug methotrexate in different neurological diseases, autoimmune pathologies and cancers. International journal of molecular sciences, 21(10), 3483.
    12. Baugh, C. M., Krumdieck, C. L., & Nair, M. G. (1973). Polygammaglutamyl metabolites of methotrexate. Biochemical and biophysical research communications, 52(1), 27-34.
    13. Dervieux, T., Furst, D., Lein, D. O., Capps, R., Smith, K., Walsh, M., & Kremer, J. (2004). Polyglutamation of methotrexate with common polymorphisms in reduced folate carrier, aminoimidazole carboxamide ribonucleotide transformylase, and thymidylate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 50(9), 2766-2774.
    14. Chabner, B. A., Allegra, C. J., Curt, G. A., Clendeninn, N. J., Baram, J., Koizumi, S., ... & Jolivet, J. (1985). Polyglutamation of methotrexate. Is methotrexate a prodrug?. The Journal of clinical investigation, 76(3), 907-912.
    15. Allegra, C. J., Chabner, B. A., Drake, J. C., Lutz, R., Rodbard, D., & Jolivet, J. (1985). Enhanced inhibition of thymidylate synthase by methotrexate polyglutamates. Journal of Biological Chemistry, 260(17), 9720-9726.
    16. Allegra, C. J., Drake, J. C., Jolivet, J., & Chabner, B. A. (1985). Inhibition of phosphoribosylaminoimidazolecarboxamide transformylase by methotrexate and dihydrofolic acid polyglutamates. Proceedings of the National Academy of Sciences, 82(15), 4881-4885.
    17. Baggott, J. E., Vaughn, W. H., & Hudson, B. B. (1986). Inhibition of 5-aminoimidazole-4-carboxamide ribotide transformylase, adenosine deaminase and 5′-adenylate deaminase by polyglutamates of methotrexate and oxidized folates and by 5-aminoimidazole-4-carboxamide riboside and ribotide. Biochemical Journal, 236(1), 193-200.
    18. Kanarek, N., Keys, H. R., Cantor, J. R., Lewis, C. A., Chan, S. H., Kunchok, T., ... & Sabatini, D. M. (2018). Histidine catabolism is a major determinant of methotrexate sensitivity. Nature, 559(7715), 632-636.
    19. Aisen, P., Enns, C., & Wessling-Resnick, M. (2001). Chemistry and biology of eukaryotic iron metabolism. The international journal of biochemistry & cell biology, 33(10), 940-959.
    20. Lieu, P. T., Heiskala, M., Peterson, P. A., & Yang, Y. (2001). The roles of iron in health and disease. Molecular aspects of medicine, 22(1-2), 1-87.
    21. Hurrell R. F. (1997). Bioavailability of iron. European journal of clinical nutrition, 51 Suppl 1, S4–S8.
    22. Abbaspour, N., Hurrell, R., & Kelishadi, R. (2014). Review on iron and its importance for human health. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences, 19(2), 164.
    23. Kessler, A. T., & Raja, A. (2019). Biochemistry, histidine.
    24. Deschamps, P., Kulkarni, P. P., Gautam-Basak, M., & Sarkar, B. (2005). The saga of copper (II)–L-histidine. Coordination Chemistry Reviews, 249(9-10), 895-909.

    QR CODE