簡易檢索 / 詳目顯示

研究生: 林博甫
Lin, Po-Fu
論文名稱: 二氧化鈦摻雜鉑金塗層被覆於 ITO 玻璃與 SS41 碳鋼並在紫外光與日光照射下的腐蝕行為研究
The Effect of Pt Doped TiO2 Coating on the Corrosion Mitigation of ITO Glass and SS41 Carbon Steels under Ultraviolet Light and Sun Light Irradiation
指導教授: 葉宗洸
Yeh, Tsung-Kuang
口試委員: 王美雅
藍貫哲
陳仁焜
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 112
中文關鍵詞: 二氧化鈦塗層SS41碳鋼紫外光與日光腐蝕行為電化學摻雜鉑金
外文關鍵詞: corrosion mitigation, Ultraviolet Light and Sun Light Irradiation, Pt Doped TiO2
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究是基於先前對於二氧化鈦被覆於碳鋼之抗蝕能力研究,加以製備了摻雜鉑金的二氧化鈦塗層,以此提升其光觸媒能力。分別探討了不同比例的鉑金摻雜量以及不同鍛燒條件下二氧化鈦被覆於導電玻璃 ITO 與碳鋼上呈現的抗腐蝕能力,並探討紫外光與日光照射下光觸媒能力的變化。二氧化鈦被覆層可以應於玻璃與金屬表層上,其光觸媒能力可使被覆玻璃後可使其達到自我清潔,而金屬上能提升抗腐蝕能力;由於出發條件要有紫外光波段,預期摻雜鉑金於二氧化鈦塗層內能更加提升光催化能力,使日光(含紫外光波段)照射下能發揮更好效果。此研究使用的被覆基材為導電玻璃 ITO 與碳鋼金屬,二氧化鈦被覆於玻璃上時,利用導電層 ITO 的存在可以測試被覆層能否發
    揮功效;被覆於碳鋼上可降低環境造成的腐蝕速率。二氧化鈦被覆於碳鋼時,發現鐵離子會因鍛燒過程而擴散進入二氧化鈦塗層,降低光催化能力,此問題與先前研究一致。因此本實驗參照先前研究結果,將碳鋼進行600OC預氧化,以氧化層作隔絕,來降低基材中鐵原子擴散問題。接著二氧化鈦被覆層經過不同鍛燒溫度後,再紫外光(UV)照射下,發現400OC熱處理皆在被覆於碳鋼與 ITO上有較佳的光催化能力,ITO 上能達到約 500mV 電位變化;而碳鋼有170mV 電位變化,且能將腐蝕電流密度從 2.22×10-6降低至 1.19×10-9,有 3 個數量級。摻雜鉑金後,在最多摻雜量下二氧化鈦鍛燒溫度 400OC能在 ITO 與碳鋼上發現提高二氧化鈦的光催化能力,甚至能將腐蝕電流密度從 2.33×10-9降低至 5.09×10-11。而在鍛燒溫度600OC下,二氧化鈦的光催化能力會略下降,這歸因於其結晶結構開始發生了改變;但隨著不同摻雜量的柏金添加,二氧化鈦塗層於 ITO 玻璃上觀察到依然能提升其光催化效果。600OC處理後被覆於碳鋼上的效果改變不明顯,這可能歸因於高溫處理導致碳鋼氧化層脫落以及提及的鐵擴散問題,使二氧化鈦薄膜失效或脫落。此外在測試改以日光光源照射中,觀察到二氧化鈦光催化能力有限,ITO上400OC熱處理的二氧化鈦層仍能夠發現摻雜鉑金有提升其光催化能力,但被覆於碳鋼上則不明顯。而經600OC熱處理的光催化能力雖降低,被覆於 ITO 上摻雜鉑金變化卻有提升;但是碳鋼上是無法確認光催化能力的改善。最後分析了各種不同鉑金摻雜量的二氧化鈦薄膜被覆於碳鋼上的極化掃描,說明各條件下被覆層的抑制腐蝕狀況。本研究製備出摻雜鉑金的二氧化鈦塗層,對玻璃最優秀的表現是摻雜達 1.9×10-3
    wt%並經過 600OC 熱處理能提升日光照射下的效果;而對於碳鋼,摻雜達 3.1×10-3
    wt%並經過400OC 熱處理,紫外光照射最能抑制碳鋼腐蝕,600OC熱處理塗層會隨
    氧化層剝落而失效,而日光下提升其光催化的能力有限。


    N/A

    摘要2 致謝4 目錄5 圖目錄9 第一章緒論 12 1.1研究前言 12 1.2研究動機 13 第二章基礎理論與文獻回顧 16 2.1基礎理論: 16 2.1.1腐蝕電化學 16 2.1.2伊凡斯圖 (Evan’s 與極化曲線 (Polarization curve): 17 2.1.3防蝕機制 19 2.2文獻回顧:22 2.2.1二氧化鈦發展概述 22 2.2.2 二氧化鈦防蝕研究 24 2.2.3溶膠凝膠法 25 2.2.4二氧化鈦熱處理溫度對其結晶性影響 27 2.2.5 摻雜鉑金之二氧化鈦對於紫外光偵測效果的提升 29 2.2.6 摻雜鉑金之二氧化鈦薄膜的導電性影響 33 2.2.7 碳鋼於高溫環境之氧化情形 37 第三章實驗方法 40 3.1 實驗流程實驗流程 40 3.2 實驗準備實驗準備 41 3.2.1試片製備 41 3.2.2預長氧化層 42 3.2.3一般與摻雜鉑金的二氧化鈦薄膜製備 43 3.3電化學分析電化學分析 48 3.3.1開路電位 49 3.3.2動態極化掃描 50 3.4試片分析試片分析 50 3.4.1 共軛聚焦微拉曼光譜 50 3.4.2 製備鑲埋試片 51 3.4.3 低掠角X光繞射XRD 51 第四章 結果與討論結果與討論 53 4.1碳鋼預長氧化層對二氧化鈦被覆的腐蝕抑制影響 53 4.2 二氧化鈦層的光觸媒能力探討 59 4.2.1 二氧化鈦之不同結晶熱處理溫度的結構影響 60 4.2.2各類二氧化鈦層的紫外光照射開路電位分析 66 4.2.3 ITO被覆各類二氧化鈦層的日光照射開路電位分析 70 4.2.4各類二氧化鈦層被覆於碳鋼上的紫外光照射分析 75 4.2.5各類二氧化鈦層被覆於碳鋼的日光照射分析 81 4.3 碳鋼被覆各二氧化鈦層的抗腐蝕能力 84 4.3.1 紫外光照射下的極化掃描 85 4.3.2日光照射下的極化掃描 88 4.4二氧化鈦被覆層光催化能力分析 90 4.4.1 可見-紫外光吸收光譜 91 4.4.2 碳鋼被覆二氧化鈦層的橫截面分析 93章 第五章 總結 107 第六章 參考文獻 109

    [1] D.P.Macwan , P.N.Dave, S.Chaturvedi, “A review on nano-TiO2 sol-gel type syntheses and its applications”, J Mater Sci, 46 (2011) 3669-3686.
    [2] 高偉陞,國立清華大學碩士論文,二氧化鈦光觸媒被覆於碳鋼之防蝕能力、表面親水性以及抗菌性之研究,2020。
    [3] J.Huang,T.Shinohara and S. Tsujikawa, “Protection
    of Carbon Steel from Atmospheric Corrosion by TiO 2
    Coating”, Zairyo to Kan kyo, 48 (1999) 575 582.
    [4] J.Yuan, R.Fujisawa and S. Tsujikawa,
    “Photopotentials of Copper Coated with TiO 2 by Sol
    Gel Method”, Zairyo to Kankyo, 43 (1994) 433 440.
    [5] J.Yuan and S.Tsujikawa, “Photo Effects of Sol Gel
    Derived TiO 2 Coating on Carbon Steel in Alkaline
    Solution”, Zairyo to Kankyo, 44 (1995) 534 542.
    [6] G.X.Shen, Y.C.Chen, C.J.Lin,“Corrosion protection
    of 316 L stainless steel by a TiO 2 nanoparticle
    coating prepared by sol gel method”, Thin Solid
    Films, 489 (2005) 130 136
    [7] T.Ohno, T.Mitsui and M. Matsumura,“Photocatalytic
    Activity of S doped TiO 2 Photocatalyst under Visible
    Light”,Chem. Lett., 32(2003)364
    [8] J.Huang, T.Shinohara and S. Tsujikawa, “Effects of
    Interfacial Iron Oxides on Corrosion Protection of
    Carbon Steel by TiO 2 Coating under Illumin ation”,
    Zairyo to Kankyo, 46 (1997)651 661.
    [9] U.R.Evans,“An Introduction to Metallic Corrosion”,
    3rd ed., Edward Arnold, London,(1981).
    [10] Graham, T.J., On the Properties of Silicic Acid and
    other Analogous Colloidal Substances.”,Chem. Soc.,
    17 (1864) 318.
    [11] Hein z K.H., Crystal Growth in Gels”,Pennsylvania
    State University Press: State College, PA,(1970)
    [12] C. Khadikar,”The Effect of Adsorbed Poly(vinyl
    Alcohol) on the Properties of Model Silica
    Suspensions.”, Ph.D.Dissertation; University of Florida, department of Florida, department of chemistry,(1988)hemistry,(1988)
    [13] Rayleigh, L.Philos. Mag., 38 (1919) 738Rayleigh, L.Philos. Mag., 38 (1919) 738
    [14] D.A.Jones, Principles and Prevention of Corrosion”, D.A.Jones, Principles and Prevention of Corrosion”, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 2nd ed., Prentice Hall, Upper Saddle River, NJ, (1996).(1996).
    [15] G.Fontana,“Corrosion Engineering”, 3rd ed., G.Fontana,“Corrosion Engineering”, 3rd ed., McGrawMcGraw--Hill, New York,(1987)Hill, New York,(1987)
    [16] A.Fujishima, K.HondA.Fujishima, K.Honda,“Electrochemical Photolysis of a,“Electrochemical Photolysis of Water at a Semiconductor Electrode”Nature,238 (1972) Water at a Semiconductor Electrode”Nature,238 (1972) 37.37.
    [17] T.Kawai and T.Sakata,“Conversion of carbohydrate T.Kawai and T.Sakata,“Conversion of carbohydrate into hydrogen fuel by a photocatalytic into hydrogen fuel by a photocatalytic process”Nature, 286 (1980) 474.process”Nature, 286 (1980) 474.123123
    [18] Steven N. Frank, Allen J.Bard,“HeterogeneouSteven N. Frank, Allen J.Bard,“Heterogeneous s Photocatalytic Oxidation of Cyanide Ion in Aqueous Photocatalytic Oxidation of Cyanide Ion in Aqueous Solutions at TiOSolutions at TiO22 Powder”, J.Am.Chem.Soc., 99 (1977) Powder”, J.Am.Chem.Soc., 99 (1977) 303.303.
    [19] S.J.Oh, D.C.Cook,S.J.Oh, D.C.Cook, andand H.E.Townsend,“Characterization of iron oxides H.E.Townsend,“Characterization of iron oxides commonly formed as corrosion products on steel”,commonly formed as corrosion products on steel”, Hyperfine Interactions,Hyperfine Interactions, joujournal article col., 112 rnal article col., 112 (1998) 59(1998) 59--66.66.
    [20] Suresh C.Pillai and S.Hehir Editors,“SolSuresh C.Pillai and S.Hehir Editors,“Sol--Gel Gel Materials for Energy, Environment and Electronic Materials for Energy, Environment and Electronic Applications”, Springer International Applications”, Springer International Publishing,2017, Library of Congress Control Number: Publishing,2017, Library of Congress Control Number: 2016958479 ch1, ch7and ch9.2016958479 ch1, ch7and ch9.
    [21] L.S.L.S.Darken and R.W.Gurry,”Equilibrium and Darken and R.W.Gurry,”Equilibrium and Thermodynamics of Liquid Oxide and Other Thermodynamics of Liquid Oxide and Other Phases”,Chem.Soc.,68(1946)Phases”,Chem.Soc.,68(1946)
    [22] K.Hashimoto,”TiOK.Hashimoto,”TiO22 Photocatalysis: A Historical Photocatalysis: A Historical Overview and Future Prospects”,Overview and Future Prospects”, Jpn.J.Appl.Phys., 44 Jpn.J.Appl.Phys., 44 (2005) 8269(2005) 8269
    [23] Steven N.Frank,Allen J.Bard,“HeterogenSteven N.Frank,Allen J.Bard,“Heterogeneous eous Photocatalytic Oxidation of Cyanide Ion in Aqueous Photocatalytic Oxidation of Cyanide Ion in Aqueous Solutions at TiO22 Powder”, J.Am.Chem. Soc., 99 (1977) Powder”, J.Am.Chem. Soc., 99 (1977) 303.303.
    [24] Heinz K.H.,“Crystal Growth in Gels”, Pennsylvania Heinz K.H.,“Crystal Growth in Gels”, Pennsylvania State University Press: State College, PA, (1970).State University Press: State College, PA, (1970).
    [25] Rayleigh, L.Philos. Mag.,Rayleigh, L.Philos. Mag., 38 (1919) 738.38 (1919) 738.
    [26] Mackenzie, J.D.J.NonMackenzie, J.D.J.Non--Cryst. Solids,“State of the Cryst. Solids,“State of the art and prospects of glass science”, Journal of Nonart and prospects of glass science”, Journal of Non--crystalline solids, 41 (1982) 1. crystalline solids, 41 (1982) 1.
    [27] Onoda, G.,Onoda, G., Hench, L.L., Eds.,“Science of Ceramic Hench, L.L., Eds.,“Science of Ceramic Processing Before Firing”, Wiley:115 New Processing Before Firing”, Wiley:115 New York,(1978).York,(1978).
    [28] Flory, P.J.,“PrinFlory, P.J.,“Principles of Polymer Chemistry”, ciples of Polymer Chemistry”, Cornell University Press: Ithaca,Cornell University Press: Ithaca, NY,NY, (1953); Chapter (1953); Chapter IX. IX.
    [29] Suresh C.Pillai and S.Hehir Editors,“SolSuresh C.Pillai and S.Hehir Editors,“Sol--Gel Gel Materials for Energy, Environment and Electronic Materials for Energy, Environment and Electronic Applications”, Springer International Applications”, Springer International Publishing,(2017), Library of ConPublishing,(2017), Library of Congress Control gress Control Number: 2016958479 ch1, ch7and ch9Number: 2016958479 ch1, ch7and ch9 123123
    [30] H.Irie, Y.Watanabe and K.Hashimoto,“CarbonH.Irie, Y.Watanabe and K.Hashimoto,“Carbon--doped doped Anatase TiOAnatase TiO22 Powders as a VisiblePowders as a Visible--light Sensitive light Sensitive Photocatalyst”, Chem. Lett., 32(2003)772. Photocatalyst”, Chem. Lett., 32(2003)772.
    [31] Q.Zhang and C.Li,“Pure Anatase Phase Titanium Q.Zhang and C.Li,“Pure Anatase Phase Titanium Dioxide Films Dioxide Films Prepared by Mist 113 Chemical Vapor Prepared by Mist 113 Chemical Vapor Deposition”, nanomaterial, 8(2018)827Deposition”, nanomaterial, 8(2018)827--839.839.
    [32] Jian Pan, Gang Liu, Gao Qing (Max) Lu, and HuiJian Pan, Gang Liu, Gao Qing (Max) Lu, and Hui--Ming Ming Cheng,“On the True Photoreactivity Order of {001}, Cheng,“On the True Photoreactivity Order of {001}, {010}, and {101} Facets of Anatase TiO{010}, and {101} Facets of Anatase TiO22 Crystals”, Crystals”, German Chemical SocietGerman Chemical Society, 50 (2011) Issue9 2133y, 50 (2011) Issue9 2133--2137. 2137.
    [33] U.G.Akpan, B.H. Hameed,“Parameters affecting the U.G.Akpan, B.H. Hameed,“Parameters affecting the photocatalytic degradation of dyes using TiOphotocatalytic degradation of dyes using TiO22--based based photocatalysts: A review”, Journal of Hazardous photocatalysts: A review”, Journal of Hazardous Materials, 170, (2009), 520Materials, 170, (2009), 520--529.529.123123
    [34] Guohua Liu,Guohua Liu, Min Zhang,Min Zhang,“Ultrahigh resp“Ultrahigh responsivity UV onsivity UV detector based on TiOdetector based on TiO22”,”, State Key Laboratory on State Key Laboratory on Integrated Optoelectronics, Jilin University, College of Electronic Science and Engineering,of Electronic Science and Engineering, 20142014
    [35] Limny Esther PérezLimny Esther Pérez--Jiméneza,Jiméneza, Juan Carlos SolisJuan Carlos Solis--Cortazara, Lizeth RojasCortazara, Lizeth Rojas--Blancoa, Germán PerezBlancoa, Germán Perez--HernHernandeza,andeza, ““Enhancement of optoelectronic Enhancement of optoelectronic properties of TiOproperties of TiO22 films containing Ptfilms containing Pt nanoparticlesnanoparticles””,, I.ZamudioI.Zamudio--Torresa,Torresa, Erik R.Moralesa, Erik R.Moralesa, Universidad Juárez Autónoma de Tabasco,Universidad Juárez Autónoma de Tabasco,20192019
    [36] L.S.Darken and R.W.Gurry,” Equilibrium and L.S.Darken and R.W.Gurry,” Equilibrium and Thermodynamics of Liquid Oxide and OtheThermodynamics of Liquid Oxide and Other Phases”, r Phases”, Chem.Soc., 68 (1946) 798Chem.Soc., 68 (1946) 798--816.816.
    [37] D.Caplan, G.I.Sproule, R.J.Hussey, and D.Caplan, G.I.Sproule, R.J.Hussey, and M.Graham,“Oxidation of FeM.Graham,“Oxidation of Fe--C Alloys at 500°C”, C Alloys at 500°C”, Oxidation of Metals, 12(1978)1.Oxidation of Metals, 12(1978)1.2323
    [38] J.Rujisomnapa, P.Seechompoo, P.Suwannachoat, J.Rujisomnapa, P.Seechompoo, P.Suwannachoat, S.Suebca and P. Wongpanya,“High Temperature S.Suebca and P. Wongpanya,“High Temperature OxidatOxidation Behaviour of Low Carbon Steel and ion Behaviour of Low Carbon Steel and Austenitic Stainless Steel”, Journal of Metals, Austenitic Stainless Steel”, Journal of Metals, Materials and Minerals,20(2010)Materials and Minerals,20(2010)
    [39] HAMAMATSUHAMAMATSU,,HHakutoakuto TaiwanTaiwan LtdLtd
    [40] Honle Honle UVUV technology, Honletechnology, Honle SOL 500SOL
    [41] X-ray diffraction of ITO film deposited onto glass ray diffraction of ITO film deposited onto glass substrate, substrate, https://www.researchgate.net/figure/Xhttps://www.researchgate.net/figure/X--ray-diffraction-of-ITO-film-deposite-onto-glass-substrate-The-peaks-ofo-the-In-O_fO_fig3_260771005ig3_260771005
    [42] Xiaozhe Zhang, Sen Yang, Zhimao Yang, Xiaoshan Xu, Xiaozhe Zhang, Sen Yang, Zhimao Yang, Xiaoshan Xu, “ Kinetics and Intermediate Phasesin Epitaxial “ Kinetics and Intermediate Phasesin Epitaxial Growth of FeGrowth of Fe33OO44 Films from Deposition and Thermal Films from Deposition and Thermal Reduction”,Reduction”, Xi'an Jiaotong University,Xi'an Jiaotong University, University of University of NebraskaNebraska--Lincoln, Lincoln,Lincoln, Lincoln,20162016
    [43] Wei YangWei Yang, Shijie Donga, Ping Luo, Anzhuo Yangli Qi , Shijie Donga, Ping Luo, Anzhuo Yangli Qi Liu, Zhixiong Xie,”Effect of Ni addition on the Liu, Zhixiong Xie,”Effect of Ni addition on the preparation of Alpreparation of Al22OO33––TiBTiB22 composites using highcomposites using high--energy ball millingenergy ball milling”, Journal of Asian Ceramic ”, Journal of Asian Ceramic Societies, Fig1, 2014Societies, Fig1, 2014

    QR CODE