簡易檢索 / 詳目顯示

研究生: 陳英傑
CHEN, Ying-Chieh
論文名稱: Srv2蛋白在酵母菌粒線體的動態平衡所扮演的角色
The Role of Srv2 in Yeast Mitochondrial Fusion and Fission Regulation
指導教授: 張壯榮
Chang, Chuang-Rung
口試委員: 呂俊毅
Leu, Jun-Yi
林敬哲
Lin, Jing-Jer
王慧菁
Wang, Hui-Ching
高茂傑
Kao, Mou-Chieh
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 62
中文關鍵詞: 酵母菌粒線體融合分裂動態平衡
外文關鍵詞: Yeast, Mitochondria, Fission, Fusion, Dynamics
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 粒線體在細胞內能進行氧化磷酸化合成ATP,同時參與許多攸關細胞存亡的訊息傳遞,因此對細胞非常重要。粒線體透過各種調控機制來進行融合、分裂及細胞內的移動不斷改變其形態,稱之粒線體動態平衡。粒線體的動態平衡與其功能調控有緊密的關聯,粒線體動態平衡失調在能量需求高的細胞中常常造成嚴重的疾病,例如:神經退化疾病及心血管疾病,顯示出粒線體動態平衡的重要性。粒線體動態平衡的調控機制目前仍未完全明瞭。本篇論文是以酵母菌為模式生物釐清未知的粒線體動態平衡調控機制。我們利用基因篩選,找到一個能與酵母菌中粒線體分裂蛋白Dnm1交互作用的蛋白Srv2。Srv2是一個在演化上具高度保留性的蛋白,在酵母菌中能調節肌動蛋白動態平衡及環磷酸腺苷/ 蛋白激酶A相關的訊息傳遞。 實驗結果指出Srv2 能與Dnm1在粒線體上交互作用,同時也發現Srv2是透過調節肌動蛋白來維持粒線體的動態平衡。 此外,剔除SRV2基因會使粒線體氧化磷酸化的功能嚴重受損。本篇論文結果指出Srv2可以藉由整合粒線體分裂蛋白及肌動蛋白動態調控來調節粒線體的動態平衡及功能。此研究提出並解釋Srv2在細胞中促進粒線體分裂的新角色,同時也是調控粒線體及細胞骨架動態平衡的蛋白。


    Mitochondria are critical organelles because they produce ATP by oxidative phosphorylation and regulate survival through miscellaneous metabolisms. Mitochondria morphology changes continuously through fission, fusion and movement by various mechanisms. Disturbance of mitochondria dynamics is associated with neuronal and cardiac diseases. Mitochondria dynamics have been found and studied for decades; however, the complicated mechanisms are not fully dissolved. The goal of the study is to elucidate the underlying regulatory mechanism of mitochondria dynamics. We identified Srv2 that interacts with mitochondria fission protein Dnm1 by genetic screen. Srv2 is a highly conserved protein that regulates actin dynamics and cAMP/ PKA signaling. Our data demonstrated that Srv2 interacts with Dnm1 specifically on mitochondria. Genetic manipulation results indicated Srv2 contributes to mitochondria dynamics through its function on actin dynamics. In addition, Srv2 depletion negatively affects mitochondria respiratory activity. Our results suggest that Srv2 mediates mitochondria dynamics through its role in conjugating the fission machinery and actin assembly. This work characterized a novel pro-fission factor, and unveiled the link between mitochondria and cytoskeleton system.

    CONTENTS 口試委員會審定書 # 致謝 i ABSTRACT ii 中文摘要 iii CONTENTS iv LIST OF TABLES vi LIST OF FIGURES 1 Chapter 1 Introduction 3 Chapter 2 Material and methods 7 2.1 Strains and genotypes 7 2.2 Plasmids construction 7 2.3 Phylogenetic analysis 9 2.4 Tandem affinity purification (TAP) tag co-precipitation 9 2.5 Microscopy 9 2.6 Mitochondria isolation 11 2.7 G-actin assay 11 2.8 Flow cytometry 12 2.9 High resolution respirometry 12 Chapter 3 Results 14 3.1 Srv2 interacts with mitochondria fission protein Dnm1 14 3.2 Srv2 shapes mitochondria in yeast Saccharomyces cerevisiae 15 3.2.1 SRV2 deletion results in hyperfused mitochondria 15 3.2.2 Srv2 depletion has no effects on mitochondria morphology in FZO1 or DNM1 deletion strains. 16 3.3 Srv2 regulates mitochondria dynamics through modulating actin cytoskeleton 17 3.3.1 Srv2 promotes mitochondria fission through modulating actin dynamics 17 3.3.2 SRV2 mutant alleles fail to rescue mitochondria dynamics in Δsrv2 yeasts 18 3.3.3 Srv2 depletion impairs actin polymerization 18 3.3.4 Srv2 regulates mitochondria dynamics likely through its function in actin cable formation. 19 3.3.5 Possible mechanism that Srv2 regulates mitochondria dynamics 20 3.4 Srv2 is required for mitochondria functionality 21 3.4.1 Srv2 depletion dampens the reserved capacity of mitochondria 21 Chapter 4 Discussion 24 4.1 Srv2 depletion impairs actin polymerization 24 4.2 Actin dynamics is closely associated with mitochondria dynamics 25 4.3 Srv2 regulates mitochondria dynamics through a novel regulatory mechanism. 26 4.4 Srv2 serves unknown functions in maintaining mitochondria respiration 27 Chapter 5 Perspective 29 REFERENCES 30 LIST OF TABLES Table 1. Yeast strains and their genotypes used in this study 37 Table 2. Plasmids used in this study 38 LIST OF FIGURES Figure 1. Phylogenetic tree of Srv2/CAP proteins in different organisms. 39 Figure 2. Srv2 co-immunoprecitates with Dnm1. 40 Figure 3. Srv2-GFP does not colocalize with mitochondria in yeast cells. 41 Figure 4. Srv2-Dnm1 interaction complex associates with mitochondria. 42 Figure 5. FIS1 deletion dissociates Srv2-Dnm1 interaction complex from mitochondria. 43 Figure 6. SRV2 deletion causes mitochondrial hyperfusion. 44 Figure 7. Srv2/ Fis1 overexpression does not alter mitochondria morphology. 45 Figure 8. Srv2 induction rescues the mitochondrial morphology in ∆srv2 yeasts 46 Figure 9. Srv2 depletion increases FIS1 transcription. 47 Figure 10. Srv2 regulates mitochondria dynamics dependent on canonical mitochondrial fission/ fusion machinery. 48 Figure 11. Srv2 regulates mitochondrial morphology closely related with actin dynamics. 49 Figure 12. srv2 mutant alleles can not rescue mitochondrial dynamics 50 Figure 13. SRV2 deletion decreases F/ G-actin ratio 51 Figure 14. Disrupting actin polymerization by Latrunculin A causes hyperfused mitochondria due to defective actin cables. 52 Figure 15. Actin cable counts in different yeast strains. 53 Figure 16. SRV2 deletion does not affect Dnm1 recruitment to mitochondria. 54 Figure 17. SRV2 deletion does not affect the Dnm1 level in mitochondria fraction. 55 Figure 18. SRV2 deletion increases occurrence of mitochondrial branching and lateral fusion. 56 Figure 19. Srv2-Dnm1 interaction occurs at mitochondrial branches and nets. 57 Figure 20. SRV2 deletion negatively affects mitochondrial reserve capacity. 58 Figure 21. Srv2 depletion declines mitochondria respiration capacity. 59 Figure 22. Srv2 depletion diminishes membrane potential increase after shifting from dextrose to raffinose. 60 Figure 23. Srv2 depletion increases mtDNA copy number. 61 Figure 24. The hypothetic model that Srv2 regulates mitochondria dynamics. 62

    REFERENCES
    1 Vandecasteele, G., Szabadkai, G. & Rizzuto, R. Mitochondrial calcium homeostasis: mechanisms and molecules. IUBMB Life 52, 213-219, doi:10.1080/15216540152846028 (2001).
    2 Ishibashi, H., Shimoda, S. & Gershwin, M. E. The immune response to mitochondrial autoantigens. Semin Liver Dis 25, 337-346, doi:10.1055/s-2005-916325 (2005).
    3 Suen, D. F., Norris, K. L. & Youle, R. J. Mitochondrial dynamics and apoptosis. Genes Dev 22, 1577-1590, doi:10.1101/gad.1658508 (2008).
    4 West, A. P., Shadel, G. S. & Ghosh, S. Mitochondria in innate immune responses. Nat Rev Immunol 11, 389-402, doi:10.1038/nri2975 (2011).
    5 Arpaia, E. et al. Mitochondrial basis for immune deficiency. Evidence from purine nucleoside phosphorylase-deficient mice. J Exp Med 191, 2197-2208 (2000).
    6 Boneh, A. Regulation of mitochondrial oxidative phosphorylation by second messenger-mediated signal transduction mechanisms. Cell Mol Life Sci 63, 1236-1248, doi:10.1007/s00018-005-5585-2 (2006).
    7 Fannjiang, Y. et al. Mitochondrial fission proteins regulate programmed cell death in yeast. Genes Dev 18, 2785-2797, doi:10.1101/gad.1247904 (2004).
    8 Finkel, T. Signal transduction by mitochondrial oxidants. The Journal of biological chemistry 287, 4434-4440, doi:10.1074/jbc.R111.271999 (2012).
    9 Bereiter-Hahn, J. Mitochondrial dynamics in aging and disease. Prog Mol Biol Transl Sci 127, 93-131, doi:10.1016/B978-0-12-394625-6.00004-0 (2014).
    10 Chan, D. C. Mitochondrial dynamics in disease. N Engl J Med 356, 1707-1709, doi:10.1056/NEJMp078040 (2007).
    11 Dorn, G. W., 2nd. Mitochondrial dynamics in heart disease. Biochimica et biophysica acta 1833, 233-241, doi:10.1016/j.bbamcr.2012.03.008 (2013).
    12 DuBoff, B., Feany, M. & Gotz, J. Why size matters - balancing mitochondrial dynamics in Alzheimer's disease. Trends Neurosci 36, 325-335, doi:10.1016/j.tins.2013.03.002 (2013).
    13 Kim, J. et al. Mitochondrial loss, dysfunction and altered dynamics in Huntington's disease. Hum Mol Genet 19, 3919-3935, doi:10.1093/hmg/ddq306 (2010).
    14 Liesa, M., Palacin, M. & Zorzano, A. Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89, 799-845, doi:10.1152/physrev.00030.2008 (2009).
    15 Reddy, P. H., Mao, P. & Manczak, M. Mitochondrial structural and functional dynamics in Huntington's disease. Brain Res Rev 61, 33-48, doi:10.1016/j.brainresrev.2009.04.001 (2009).
    16 Schafer, A. & Reichert, A. S. Emerging roles of mitochondrial membrane dynamics in health and disease. Biol Chem 390, 707-715, doi:10.1515/BC.2009.086 (2009).
    17 Van Laar, V. S. & Berman, S. B. Mitochondrial dynamics in Parkinson's disease. Exp Neurol 218, 247-256, doi:10.1016/j.expneurol.2009.03.019 (2009).
    18 Wang, X. et al. The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's disease. J Neurochem 109 Suppl 1, 153-159, doi:10.1111/j.1471-4159.2009.05867.x (2009).
    19 Rich, P. R. The molecular machinery of Keilin's respiratory chain. Biochemical Society transactions 31, 1095-1105, doi:10.1042/ (2003).
    20 Mitchell, P. & Moyle, J. Chemiosmotic hypothesis of oxidative phosphorylation. Nature 213, 137-139 (1967).
    21 Mitchell, P. Keilin's respiratory chain concept and its chemiosmotic consequences. Science 206, 1148-1159 (1979).
    22 Page, C. C., Moser, C. C., Chen, X. & Dutton, P. L. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402, 47-52, doi:10.1038/46972 (1999).
    23 Kalckar, H. M. 50 years of biological research--from oxidative phosphorylation to energy requiring transport regulation. Annual review of biochemistry 60, 1-37, doi:10.1146/annurev.bi.60.070191.000245 (1991).
    24 Kalckar, H. M. Origins of the concept oxidative phosphorylation. Molecular and cellular biochemistry 5, 55-63 (1974).
    25 Frederick, R. L. & Shaw, J. M. Moving mitochondria: establishing distribution of an essential organelle. Traffic 8, 1668-1675, doi:10.1111/j.1600-0854.2007.00644.x (2007).
    26 Fehrenbacher, K. L., Yang, H. C., Gay, A. C., Huckaba, T. M. & Pon, L. A. Live cell imaging of mitochondrial movement along actin cables in budding yeast. Current biology : CB 14, 1996-2004, doi:10.1016/j.cub.2004.11.004 (2004).
    27 Simon, V. R., Karmon, S. L. & Pon, L. A. Mitochondrial inheritance: cell cycle and actin cable dependence of polarized mitochondrial movements in Saccharomyces cerevisiae. Cell Motil Cytoskeleton 37, 199-210, doi:10.1002/(SICI)1097-0169(1997)37:3<199::AID-CM2>3.0.CO;2-2 (1997).
    28 Chernyakov, I., Santiago-Tirado, F. & Bretscher, A. Active segregation of yeast mitochondria by Myo2 is essential and mediated by Mmr1 and Ypt11. Current biology : CB 23, 1818-1824, doi:10.1016/j.cub.2013.07.053 (2013).
    29 Valiathan, R. R. & Weisman, L. S. Pushing for answers: is myosin V directly involved in moving mitochondria? The Journal of cell biology 181, 15-18, doi:10.1083/jcb.200803064 (2008).
    30 Okamoto, K. & Shaw, J. M. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet 39, 503-536, doi:10.1146/annurev.genet.38.072902.093019 (2005).
    31 Bleazard, W. et al. The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nature cell biology 1, 298-304, doi:10.1038/13014 (1999).
    32 Hermann, G. J. et al. Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. The Journal of cell biology 143, 359-373 (1998).
    33 Mozdy, A. D., McCaffery, J. M. & Shaw, J. M. Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. The Journal of cell biology 151, 367-380 (2000).
    34 Sesaki, H. & Jensen, R. E. UGO1 encodes an outer membrane protein required for mitochondrial fusion. The Journal of cell biology 152, 1123-1134 (2001).
    35 Tieu, Q. & Nunnari, J. Mdv1p is a WD repeat protein that interacts with the dynamin-related GTPase, Dnm1p, to trigger mitochondrial division. The Journal of cell biology 151, 353-366 (2000).
    36 Wong, E. D. et al. The dynamin-related GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria. The Journal of cell biology 151, 341-352 (2000).
    37 Friedman, J. R. et al. ER tubules mark sites of mitochondrial division. Science 334, 358-362, doi:10.1126/science.1207385 (2011).
    38 Korobova, F., Ramabhadran, V. & Higgs, H. N. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339, 464-467, doi:10.1126/science.1228360 (2013).
    39 Hatch, A. L., Gurel, P. S. & Higgs, H. N. Novel roles for actin in mitochondrial fission. Journal of cell science 127, 4549-4560, doi:10.1242/jcs.153791 (2014).
    40 Kornmann, B. & Walter, P. ERMES-mediated ER-mitochondria contacts: molecular hubs for the regulation of mitochondrial biology. Journal of cell science 123, 1389-1393, doi:10.1242/jcs.058636 (2010).
    41 Murley, A. et al. ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast. eLife 2, e00422, doi:10.7554/eLife.00422 (2013).
    42 Osman, C., Noriega, T. R., Okreglak, V., Fung, J. C. & Walter, P. Integrity of the yeast mitochondrial genome, but not its distribution and inheritance, relies on mitochondrial fission and fusion. Proceedings of the National Academy of Sciences of the United States of America 112, E947-956, doi:10.1073/pnas.1501737112 (2015).
    43 Chang, C. R. & Blackstone, C. Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann N Y Acad Sci 1201, 34-39, doi:10.1111/j.1749-6632.2010.05629.x (2010).
    44 McBride, H. & Soubannier, V. Mitochondrial function: OMA1 and OPA1, the grandmasters of mitochondrial health. Current biology : CB 20, R274-276, doi:10.1016/j.cub.2010.02.011 (2010).
    45 Li, S. et al. Transient assembly of F-actin on the outer mitochondrial membrane contributes to mitochondrial fission. The Journal of cell biology 208, 109-123, doi:10.1083/jcb.201404050 (2015).
    46 Anesti, V. & Scorrano, L. The relationship between mitochondrial shape and function and the cytoskeleton. Biochimica et biophysica acta 1757, 692-699, doi:10.1016/j.bbabio.2006.04.013 (2006).
    47 De Vos, K. J., Allan, V. J., Grierson, A. J. & Sheetz, M. P. Mitochondrial function and actin regulate dynamin-related protein 1-dependent mitochondrial fission. Current biology : CB 15, 678-683, doi:10.1016/j.cub.2005.02.064 (2005).
    48 Boldogh, I. R. & Pon, L. A. Interactions of mitochondria with the actin cytoskeleton. Biochimica et biophysica acta 1763, 450-462, doi:10.1016/j.bbamcr.2006.02.014 (2006).
    49 Moore, A. S., Wong, Y. C., Simpson, C. L. & Holzbaur, E. L. Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission-fusion balance within mitochondrial networks. Nature communications 7, 12886, doi:10.1038/ncomms12886 (2016).
    50 Stavru, F., Palmer, A. E., Wang, C., Youle, R. J. & Cossart, P. Atypical mitochondrial fission upon bacterial infection. Proceedings of the National Academy of Sciences of the United States of America 110, 16003-16008, doi:10.1073/pnas.1315784110 (2013).
    51 Fedor-Chaiken, M., Deschenes, R. J. & Broach, J. R. SRV2, a gene required for RAS activation of adenylate cyclase in yeast. Cell 61, 329-340 (1990).
    52 Gerst, J. E., Ferguson, K., Vojtek, A., Wigler, M. & Field, J. CAP is a bifunctional component of the Saccharomyces cerevisiae adenylyl cyclase complex. Molecular and cellular biology 11, 1248-1257 (1991).
    53 Freeman, N. L., Chen, Z., Horenstein, J., Weber, A. & Field, J. An actin monomer binding activity localizes to the carboxyl-terminal half of the Saccharomyces cerevisiae cyclase-associated protein. The Journal of biological chemistry 270, 5680-5685 (1995).
    54 Chaudhry, F., Little, K., Talarico, L., Quintero-Monzon, O. & Goode, B. L. A central role for the WH2 domain of Srv2/CAP in recharging actin monomers to drive actin turnover in vitro and in vivo. Cytoskeleton (Hoboken) 67, 120-133, doi:10.1002/cm.20429 (2010).
    55 Chaudhry, F. et al. Srv2/cyclase-associated protein forms hexameric shurikens that directly catalyze actin filament severing by cofilin. Molecular biology of the cell 24, 31-41, doi:10.1091/mbc.E12-08-0589 (2013).
    56 Mattila, P. K. et al. A high-affinity interaction with ADP-actin monomers underlies the mechanism and in vivo function of Srv2/cyclase-associated protein. Molecular biology of the cell 15, 5158-5171, doi:10.1091/mbc.E04-06-0444 (2004).
    57 Vojtek, A. et al. Evidence for a functional link between profilin and CAP in the yeast S. cerevisiae. Cell 66, 497-505 (1991).
    58 Karpova, T. S., Tatchell, K. & Cooper, J. A. Actin filaments in yeast are unstable in the absence of capping protein or fimbrin. The Journal of cell biology 131, 1483-1493 (1995).
    59 Toshima, J. Y. et al. Srv2/CAP is required for polarized actin cable assembly and patch internalization during clathrin-mediated endocytosis. Journal of cell science 129, 367-379, doi:10.1242/jcs.176651 (2016).
    60 Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research 32, 1792-1797, doi:10.1093/nar/gkh340 (2004).
    61 Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular biology and evolution 17, 540-552 (2000).
    62 Dereeper, A., Audic, S., Claverie, J. M. & Blanc, G. BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC evolutionary biology 10, 8, doi:10.1186/1471-2148-10-8 (2010).
    63 Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic biology 52, 696-704 (2003).
    64 Chevenet, F., Brun, C., Banuls, A. L., Jacq, B. & Christen, R. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC bioinformatics 7, 439, doi:10.1186/1471-2105-7-439 (2006).
    65 Dunn, K. W., Kamocka, M. M. & McDonald, J. H. A practical guide to evaluating colocalization in biological microscopy. American journal of physiology. Cell physiology 300, C723-742, doi:10.1152/ajpcell.00462.2010 (2011).
    66 Kerppola, T. K. Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annual review of biophysics 37, 465-487, doi:10.1146/annurev.biophys.37.032807.125842 (2008).
    67 Meisinger, C., Pfanner, N. & Truscott, K. N. Isolation of yeast mitochondria. Methods in molecular biology 313, 33-39, doi:10.1385/1-59259-958-3:033 (2006).
    68 Leadsham, J. E. & Gourlay, C. W. cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation. BMC cell biology 11, 92, doi:10.1186/1471-2121-11-92 (2010).
    69 Dranka, B. P. et al. Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free radical biology & medicine 51, 1621-1635, doi:10.1016/j.freeradbiomed.2011.08.005 (2011).
    70 Pesta, D. & Gnaiger, E. High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods in molecular biology 810, 25-58, doi:10.1007/978-1-61779-382-0_3 (2012).
    71 Chang, C. R. & Blackstone, C. Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. The Journal of biological chemistry 282, 21583-21587, doi:10.1074/jbc.C700083200 (2007).
    72 Kerppola, T. K. Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nature protocols 1, 1278-1286, doi:10.1038/nprot.2006.201 (2006).
    73 Lew, D. J. Formin' actin filament bundles. Nature cell biology 4, E29-30, doi:10.1038/ncb0202-e29 (2002).
    74 Higuchi-Sanabria, R., Vevea, J. D., Charalel, J. K., Sapar, M. L. & Pon, L. A. The transcriptional repressor Sum1p counteracts Sir2p in regulation of the actin cytoskeleton, mitochondrial quality control and replicative lifespan in Saccharomyces cerevisiae. Microbial cell 3, 79-88, doi:10.15698/mic2016.02.478 (2016).
    75 Alioto, S. L., Garabedian, M. V., Bellavance, D. R. & Goode, B. L. Tropomyosin and Profilin Cooperate to Promote Formin-Mediated Actin Nucleation and Drive Yeast Actin Cable Assembly. Current biology : CB 26, 3230-3237, doi:10.1016/j.cub.2016.09.053 (2016).
    76 Sarin, M. et al. Alterations in c-Myc phenotypes resulting from dynamin-related protein 1 (Drp1)-mediated mitochondrial fission. Cell death & disease 4, e670, doi:10.1038/cddis.2013.201 (2013).
    77 Hoque, A. et al. Mitochondrial fission protein Drp1 inhibition promotes cardiac mesodermal differentiation of human pluripotent stem cells. Cell death discovery 4, 39, doi:10.1038/s41420-018-0042-9 (2018).
    78 Kabra, U. D. et al. Direct Substrate Delivery Into Mitochondrial Fission-Deficient Pancreatic Islets Rescues Insulin Secretion. Diabetes 66, 1247-1257, doi:10.2337/db16-1088 (2017).
    79 Pfleger, J., He, M. & Abdellatif, M. Mitochondrial complex II is a source of the reserve respiratory capacity that is regulated by metabolic sensors and promotes cell survival. Cell death & disease 6, e1835, doi:10.1038/cddis.2015.202 (2015).
    80 van der Windt, G. J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68-78, doi:10.1016/j.immuni.2011.12.007 (2012).
    81 Keuper, M. et al. Spare mitochondrial respiratory capacity permits human adipocytes to maintain ATP homeostasis under hypoglycemic conditions. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 28, 761-770, doi:10.1096/fj.13-238725 (2014).
    82 De Deken, R. H. The Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44, 149-156, doi:10.1099/00221287-44-2-149 (1966).
    83 Trumbly, R. J. Glucose repression in the yeast Saccharomyces cerevisiae. Molecular microbiology 6, 15-21 (1992).
    84 Griffin, E. E., Graumann, J. & Chan, D. C. The WD40 protein Caf4p is a component of the mitochondrial fission machinery and recruits Dnm1p to mitochondria. The Journal of cell biology 170, 237-248, doi:10.1083/jcb.200503148 (2005).
    85 Altmann, K. & Westermann, B. Role of essential genes in mitochondrial morphogenesis in Saccharomyces cerevisiae. Molecular biology of the cell 16, 5410-5417, doi:10.1091/mbc.E05-07-0678 (2005).
    86 Cerveny, K. L., McCaffery, J. M. & Jensen, R. E. Division of mitochondria requires a novel DNM1-interacting protein, Net2p. Molecular biology of the cell 12, 309-321, doi:10.1091/mbc.12.2.309 (2001).

    QR CODE