研究生: |
王仲盛 Wang, Jhong-Sheng |
---|---|
論文名稱: |
金氧半電晶體之漂移電流式臨界電壓模型 Drift-Current Threshold Voltage Models of MOSFETs |
指導教授: |
連振炘
Lien, Chenhsin 施君興 Shih, Chun-Hsing |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 112 |
中文關鍵詞: | 金氧半電晶體 、臨界電壓 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出創新的漂移式臨界電壓模型以正確描述現今及未來金氧半電晶體的開關行為,解決了傳統2□B臨界電壓模型無法應用在各式新穎結構之金氧半電晶體的問題。當元件微縮至奈米級尺度,各種元件設計與架構使得電晶體的切換特性不再與基底摻雜濃度相關,使得傳統以反轉電荷定義之臨界電壓模型無法再適當合理地描述金氧半電晶體的開關行為。
在此論文中,臨界電壓的定義不再傳統地依據反轉電荷量的多寡,而是提出由漂移與擴散電流之大小關係決定。由於漂移電流與擴散電流分別主導了金氧半電晶體其導通與關閉電流之行為,因此在兩者相當的情況下,可作為理想之臨界電壓位準。相對於傳統2□B臨界電壓模型,漂移電流式臨界電壓模型下之臨界電壓不再由『電荷』決定,而是直接以『電流』觀點來分析元件的導通與關閉行為,如此,不只在解析上提供了更具有物理意義的定義,並回歸到電路操作上根本的電流作用。
漂移電流式臨界電壓模型,透過對帕松方程式求解,確實的解出漂移電流與擴散電流,進一步得到臨界電壓及電流之值。透過適當的數學分析,各種元件設計及架構,皆能得到符合於模擬結果之解析解。此新臨界電壓模型不僅適用於各式典型或非典型的單、多閘極金氧半電晶體,對採用新閘氧層或新通道層的未來架構,皆能給出適切的臨界電壓解析模型,其相應的臨界電流並能提供作為臨界電壓實際量測之電流標準。
[1] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, Vol. 38, No. 8, pp. 114□117, Apr. 1965.
[2] T. Ghani, K. Mistry, P. Packan, S. Thompson, M. Stealer, S. Tyagi, M. Bohr, “Scaling challenges and device design requirements for high performance sub-50 nm gate length planar CMOS transistors,” in Symp. VLSI Tech. Dig., pp. 174□175, 2000.
[3] G. S. Lujan, S. Kubicek, S. De Gendt, M. Heyns, W. Magnus, and K. De Meyer, “Mobility Degradation in High-K Transistors: The Role of the Charge Scattering,” in ESSDRC, pp. 399□402, 2003.
[4] C. Hu, “Gate Oxide Scaling Limits and Projection,” in IEDM Tech. Dig., pp. 319□322, 1996.
[5] S.-H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, “Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s,” IEEE Electron Device Lett., Vol. 18., No. 5, pp. 209□211, May 1997.
[6] Y. Taur, C. H. Wann, and David J. Frank, “25nm CMOS design considerations,” in IEDM Tech. Dig., pp. 789□792, 1998.
[7] R. Chau, S. Datta, M. Doczy, J. Kavalieros, and M. Metz, “Gate dielectric scaling for high-performance CMOS: from SiO2 to High-K,” in IWGI, pp. 124–126, Nov. 2003.
[8] R. Chau, B. Doyle, J. Kavalieros, D. Barlage, A. Murthy, M. Doczy, et al., “Advanced depleted-substrate transistors: single-gate, double-gate and tri-gate,” in SSDM, pp. 68□69, 2002.
[9] R. Chau, J. Kavalieros, B. Roberds, R. Schenker, D. Lionberger, D. Barlage, et al., “30 nm physical gate length CMOS transistors with 1.0 ps n-MOS and 1.7 ps p-MOS gate delays,” in IEDM Tech. Dig., pp. 45–68, 2000.
[10] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, et al. “A 45nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect Layers, 193nm dry patterning, and 100% Pb-free packaging,” in IEDM Tech. Dig., pp. 247–250, 2007.
[11] R. Choi; K. Onishi, C. S. Kang, S. Gopalan, R. Nieh, Y. H. Kim, et al., “Fabrication of high quality ultra-thin HfO2 gate dielectric MOSFETs using deuterium anneal,” in IEDM Tech. Dig., pp. 613–616, 2002.
[12] G. Lucovsky, B. Rayner, Y. Zhang, and J. Whitten, “Experimental determination of band offset energies between Zr silicate alloy dielectrics and crystalline Si substrates by XAS, XPS and AES and ab initio theory: a new approach to the compositional dependence of direct tunneling currents,” in IEDM Tech. Dig., pp. 617–620, 2002.
[13] S. Inumiyal, K. Sekine, S. Niwa, A. Kaneko, M. Sato, T. Watanabe, et al., “Fabrication of HfSiON gate dielectrics by plasma oxidation and nitridation, optimized for 65 nm mode low power CMOS applications,” in Symp. VLSI Tech. Dig., pp. 17□18, 2003.
[14] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros,and M. Metz, “High-□/metal–gate stack and its MOSFET characteristics,” IEEE Electron Device Lett., Vol. 25, No. 6, pp. 408□410, Jun. 2004.
[15] Y. Taur and Tak H. Ning, Fundamentals of Modern VLSI Devices, Cambridge, 1998.
[16] C. O. Chui, H. Kim, D. Chi, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, “A sub-400□C germanium MOSFET technology with high-κ dielectric and metal gate,” in IEDM Tech. Dig., pp. 437–440, 2002.
[17] D. J. Frank, R. H. Dennard, E. Nowak, D. M. Solomon, Y. Taur, and H. Wong, “Device scaling limits of Si MOSFET’s and their application dependencies,” Proc. IEEE, vol. 89, pp. 259□288, Mar. 2001.
[18] A. R. Brown, A. Asenov, and J. R. Watling, “Intrinsic fluctuations in sub 10-nm double-gate MOSFETs introduced by discreteness of charge and matter,” IEEE Trans. on Nanotech., Vol. 1, No. 4, pp. 195□200, Dec. 2002.
[19] A. V. Thean, Z. H. Shi, L. Mathew, T. Stephens, H. Desjardin, C. Parker,, et al., “Performance and variability comparisons between multi-gate FETs and planar SOI transistors,” in IEDM Tech. Dig., pp. 881–884, 2006.
[20] S. M. Sze, Physics of Semiconductor Devices, 2nd edition, New York: Wiley, 1981.
[21] A. Ortiz-Conde, J. Rodriguez, F. J. Garcia Sanchez, and J.J. Liou, “An improved definition for modeling the threshold voltage of MOSFETs,” Solid State Electronics, Vol. 42, No. 9, pp. 1743–1746, Sep. 1998.
[22] J. Benson, N. V. D’Halleweyn, W. Redman-White, C. A. Easson, M. J. Uren, O. Faynot, and J.-L. Pelloie, “A physically based relation between extracted threshold voltage and surface potential flat-band voltage for MOSFET compact modeling,” IEEE Trans. on Electron Devices, Vol. 48, No. 5, pp. 1019–1021, May 2001.
[23] J. A. Salcedo, A. Ortiz-Conde, F. J. Garc□a S□nchez, J. Muci, J. J. Liou, and Y. Yue, “New approach for defining the threshold voltage of MOSFETs,” IEEE Trans. on Electron Devices, Vol. 48, No. 4, pp. 809–813, Apr. 2001.
[24] F. J. Garcia, A. Ortiz-Conde, and J. Muci, “Understanding threshold voltage in undoped-body MOSFETs: An appraisal of various criteria,” Microelectronic Reliability, Vol. 46, pp. 731–742, May 2006.
[25] P. Francis, A. Terao, D. Flandre, and F. Van de Wiele, “Modeling of Ultrathin Double-Gate nMOS/SOI Transistors,” IEEE Trans. on Electron Devices, Vol. 41, No. 5, pp. 715–720, May 1994.
[26] J. P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI, Amsterdam, The Netherlands: Kluwer, 1991.
[27] C. P. Auth and J. D. Plummer, “A simple model for threshold voltage of surrounding-gate MOSFET’s,” IEEE Trans. on Electron Devices, Vol. 45, No. 11, pp. 2381–2383, Nov. 1998.
[28] X. Shi and M. Wong, “On the threshold voltage of metal-oxide-semiconductor field-effect transistors,” Solid State Electronics, vol. 49, no. 6, pp. 1179–1184, Jun. 2005.
[29] B. Ray and S. Mahapatra, “A new threshold voltage model for omega gate cylindrical nanowire transistor,” on 21st International Conference on VLSI Design, 2008.
[30] Q. Chen, E. M. Harrell, and J. D. Meindl, “A physical short-channel threshold voltage model for undoped symmetric double-gate MOSFETs,” IEEE Trans. on Electron Devices, Vol. 50, No. 7, pp. 1631□1637, Jul. 2003.
[31] H. A. El Hamid, B. I□□guez, and J. R. Guitart, “Analytical model of the threshold voltage and subthreshold swing of undoped cylindrical gate-all-around-based MOSFETs,” IEEE Trans. on Electron Devices, Vol. 54, No. 3, pp. 572□579, Mar. 2007.
[32] Y. Taur, X. Liang, W. Wang, and H. Lu, “A continuous, analytic drain-current model for DG MOSFETs,” IEEE Electron Device Lett., Vol. 25, No. 2, pp. 107□109, Feb. 2004.
[33] J. B. McKitterick and A. L. Caviglia, “An analytic model for thin SOI transistors,” IEEE Trans. on Electron Devices, Vol. 36, No. 6, pp. 1133□1138, Jun. 1989.
[34] B. Mazhari and D. E. Ioannou, “Surface potential at threshold in thin-film SOI MOSFET’s,” IEEE Trans. on Electron Devices, Vol. 40, No. 6, pp. 1129□1133, Jun. 1993.
[35] Synopsys MEDICI User’s Manual, Synopsys Inc., Mountain View, CA, 2006.
[36] C. G. B. Garrett and W. H. Brattain, “Physical theory of semiconductor surfaces,” Physical Review, Vol. 99, No. 2, pp. 376–387, Jul. 1955.
[37] R. H. Kingston and S. F. Neustadter, “Calculation of the space charge, electric field, and free carrier concentration at the surface of a semiconductor,” Journal of Appl. Phys., Vol. 26, No. 6, pp. 718–720, Jul. 1955.
[38] H. -S. Wong, M. H. White, T. J. Krutsick, and R. V. Booth, “Modeling of transconductance degradation and extraction of threshold voltage in thin oxide MOSFET’s,” Solid-state Electronics., Vol. 30, No. 9, pp. 953□968, 1987.
[39] J. R. Brews, “A charge sheet model of the MOSFET”, Solid-State Electron. Vol. 21, Issue. 2, pp. 345–352, Feb. 1978.
[40] Stanley Wolf, Silicon processing for the VLSI era, Vol. 3: The submicron MOSFET, Lattice Press, 1995.
[41] J. Y.-C, Sun, Y. Taur, R. H. Dennard, and S. P. Klepner, “Submicronmeter-channel CMOS for low-temperature operation,” IEEE Trans. on Electron Devices, Vol. 34, No. 1, pp. 19□27, Jan. 1987.
[42] G. G. Shahidi, D. A. Antoniadis, H. I. Smith, , “Indium channel implants for improved MOSFET behavior at the 100-nm channel length regime,” IEEE Trans. on Electron Devices, Vol. 36, No. 11, pp. 2605, Nov. 1989.
[43] ITRS, International Technology Roadmap for Semiconductors, 2007 edition.
[44] Y. Taur, “An analytical solution to a double-gate MOSFET with undoped body,” IEEE Electron Device Lett., Vol. 21, No. 5, pp. 245-247, May 2000.
[45] K. K. Young, “Short-channel effect in fully depleted SOI MOSFET’s,” IEEE Trans. on Electron Devices, Vol. 36, No. 2, pp. 399–402, Feb. 1989.
[46] W. Jin, S. K. H. Fung, W. Liu, P. C. H. Chan, and C. Hu, “Self-heating characterization for SOI MOSFET based on AC output conductance,” in in IEDM Tech. Dig., pp. 175–178, 1999.
[47] S. Miyano, M. Hirose, and F. Masuoka, “Numerical analysis of a cylindrical thin-pillar transistor (CYNTHIA),” IEEE Trans. Electron Devices, Vol. 39, No. 8, pp. 1876–1881, Aug. 1992.
[48] B. Doyle, B. Boyanov, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, R. Rios, and R. Chau, “Tri-gate fully depleted CMOS transistors: Fabrication, design, and layout,” in Proc. VLSI Tech. Symp., pp. 133–134, June 2003.
[49] J. G. Fossum, J.-W. Yang, and V. P. Trivedi, “Suppression of Corner Effects in Triple-Gate MOSFETs,” IEEE Electron Device Lett., Vol. 24, No. 12, pp. 745–747, Dec. 2003.
[50] Y. Chen and J. Luo, “A comparative study of double-gate and surrounding-gate MOSFETs in strong inversion and accumulation using an analytical model,” in Proc. Int. Conf. Modeling Simulation of Microsystems, pp. 546–549, 2001.
[51] B. Yu, H. Lu, M. Liu, and Y. Taur, “Explicit continuous models for double-gate and surrounding-gate MOSFETs,” IEEE Trans. on Electron Devices, Vol. 54, No. 10, pp. 2715–2722, Oct. 2007.
[52] B. I□□guez, D. Jim□nez, J. Roig, and H. A. Hamid, “Explicit continuous model for long-channel undoped surrounding gate MOSFETs,” IEEE Trans. on Electron Devices, Vol. 52, No. 8, pp. 1868–1872, Aug. 2005.
[53] D. Jim□nez, J. S□enz, B. I□□guez, and J. Su□□, “Modeling of nanoscale gate-all-around MOSFETs,” IEEE Electron Device Lett., Vol. 25, No. 5, pp. 314–316, May 2004.