簡易檢索 / 詳目顯示

研究生: 陳冠嘉
論文名稱: 超高真空穿透式電子顯微鏡臨場觀察銅導線電遷移特性之研究
A study of electromigration in copper metal lines by in-situ ultrahigh vacuum transmission electron microscopy
指導教授: 廖建能
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 89
中文關鍵詞: 銅導線電遷移穿透式電子顯微鏡雙晶
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用超高真空穿透式電子顯微鏡臨場在室溫下觀察未披覆銅導線在電流作用下的電遷移情形,針對銅原子在以表面擴散機制為主的情況下沿著不同晶面的電遷移情形加以分析,並探討銅導線因電遷移所導致的元件可靠度問題。研究結果顯示,銅導線在電流密度為2 × 106 A/cm2的情況下因電遷移效應在(211)及(110)銅晶粒表面會沿著特定路徑進行遷移,更會在(111)晶面上產生原子層表面階梯結構。對銅的晶體而言,在(111)晶面上沿著[110]方向會是最容易受電遷移效應影響的擴散路徑。由於此原子異向遷移特性,在電流應力作用下銅薄膜(111)晶面之X光繞射峰強度會隨著通電流的時間增加而下降,顯示出(111)晶面較易受電遷移作用的影響。另外,原子力顯微鏡分析結果亦顯示銅薄膜在電流應力作用下可以降低銅薄膜表面的粗糙度而使表面平整度變好。
    本研究更進一步地利用高真空穿透式電子顯微鏡臨場在室溫下觀察銅雙晶結構對於銅原子受電遷移作用下的影響。實驗結果顯示,在電流應力作用下產生的銅原子階梯結構會沿著特定晶面移動,而且原子遷移會被銅晶體內的雙晶界面所阻擋而產生約5秒的時間延遲。雙晶界面提供一個銅原子電遷移的障礙,所以在電遷移作用下可以降低銅導線內孔洞成長的速度。此實驗分析不僅可以作為電遷移在雙晶結構晶體的基礎研究也提供了一個藉由增加銅晶體中雙晶密度而改進銅導線可靠度的一個方法。此外,實驗發現銅晶體在通入電流後會使晶體內的雙晶結構消失,推測可能是不同晶界結構與雙晶界面的交互作用,造成雙晶界面移動或是銅原子在晶界面移動的情形。


    Electromigration in unpassivated copper metal lines was directly observed at room temperature in ultrahigh vacuum by in-situ transmission electron microscopy. Electromigration study of Cu grains with specific crystal orientations was performed when surface diffusion is a dominant migration mechanism, and the EM-related reliability considerations were also discussed. Atomic resolution imaging of Cu electromigration was conducted on (211) and (110) crystal planes under an electric current density of 2 × 106 A/cm2. It was found that the EM-induced atomic migration appeared to be anisotropic, and some atomic surface steps were observed on (111) crystal planes. The combination of {111} planes and <110> directions was suggested to be the most favored electromigration paths for crystalline copper. The relatively intensity of (111) peak in the Cu thin film was found to degrade after electric current stressing by X-ray diffractometry, indicating that {111} crystal planes are more sensitive to EM damage. The atomic migration leading to a smoothing of the Cu thin film was also observed by atomic force microscopy, which suggests a feasible way to reduce the roughness of the Cu thin film.
    Furthermore, the influence of twin boundaries on atomic-scale electromigration was also investigated at room temperature in ultrahigh vacuum by in-situ transmission electron microscopy. It was found that some atomic surface steps are driven by an electric current to move along specific crystal planes and are blocked at the {111}/<112> type twin boundaries in a Cu grain for a period of time (~ 5s). The results indicate that the twin boundaries serve as barriers to EM-induced atomic transport, and hence reduce the voiding rate in the Cu conductors under electric current stressing. The study not only helps in understanding the fundamental EM mechanism in the twin-structured crystal, but also provides a possible means of improving the reliability of Cu interconnects by introducing a high density of twins in the Cu wires. In addition, it was found that the twin region in the Cu grain can be eliminated by introducing an electric current through the sample. The grain boundary structure may be held responsible for the observed different interactions between electric currents and twin boundaries.

    致謝 I Abstract II 摘要 IV Table of Contents VI List of Figures IX List of Tables XIII Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Organization of thesis 4 Chapter 2 Literature review 6 2.1 Electromigration physics 6 2.1.1 Theory of electromigration 6 2.1.2 Effect of Stress on electromigration 10 2.1.3 Electromigration lifetime model 11 2.2 Effect of microstructure on Cu electromigration 12 2.3 Current crowding effect on electromigration 14 2.4 Suppression of Electromigration for Cu interconnects 16 Chapter 3 Experimental procedure 18 3.1 Specimen preparation 18 3.1.1 Specimen preparation for TEM observations 18 3.1.2 Specimen preparation for X-ray diffractometry and atomic force microscopy measurements 20 3.2 Analyses techniques 21 3.2.1 JEOL 2000V UHV-TEM 21 3.2.2 X-ray diffractometry 21 3.2.3 Atomic force microscopy 22 3.2.4 Electrical measurement 22 Chapter 4 Electromigration in Cu lines at room temperature 23 4.1 Preface 23 4.2 Electromigration-induced mass transport in Cu lines at room temperature 23 4.3 Anisotropic atomic migration behavior in crystalline Cu 25 4.3.1 Favorable electromigration path in crystalline Cu 25 4.3.2 Electromigration-induced atomic surface steps in Cu lines 27 4.4 Effect of EM on texture and surface morphology of Cu thin film 31 4.5 Conclusions 33 Chapter 5 Atomic-scale electromigration interfered with twin boundaries in Cu 34 5.1 Preface 34 5.2 EM-induced atomic transport at the triple point between twin boundary and grain boundary 34 5.2.1 Zig-zag shape in the twin-structured Cu grain 34 5.2.2 Retardation of atomic-scale EM at twin boundaries 37 5.3 Electric-current-induced twin boundary motion in Cu lines 40 5.4 Conclusions 43 Chapter 6 Conclusions 44 6.1 Conclusions 44 6.2 Future prospects 45 References 47 Publication List 58 Figures 59 Tables 89

    1. International Technology Roadmap for Semiconductors.
    2. C. K. Hu and B. Luther, “Electromigration in two-level interconnects of Cu and Al alloys”, Mater. Chem. Phys. 41, 1 (1995).
    3. J. R. Lloyd, “Electromigration in integrated circuit conductors”, J. Phys. D: Appl. Phys. 32, R109 (1999).
    4. K. N. Tu, “Recent advances on electromigration in very-large-scale-integration of interconnects”, J. Appl. Phys. 94, 5451 (2003).
    5. C.-K. Hu, R. Rosenberg, and K. Y. Lee, “Electromigration path in Cu thin-film lines”, Appl. Phys. Lett. 74, 2945 (1999).
    6. C. S. Hau-Riege, “An introduction to Cu electromigration”, Microelectron. Reliab. 44, 195 (2004).
    7. J. R. Lloyd, J. Clemens, and R. Snede, “Copper metallization reliability”, Microelectron. Reliab. 39, 1595 (1999).
    8. J. S. Huang, T. L. Shofner, and J. Zhao, “Direct observation of void morphology in step-like electromigration resistance behavior and its correlation with critical current density”, J. Appl. Phys. 89, 2130 (2001).
    9. C.-K. Hu, K. Y. Lee, L. Gignac, and R. Carruthers, “Electromigration in 0.25 μm wide Cu line on W”, Thin Solid Films. 308-309, 443 (1997).
    10. B. H. Jo and R. W. Vook, “In-situ ultra-high vacuum studies of electromigration in copper films”, Thin Solid Films, 262, 129 (1995).
    11. D. Padhi and G. Dixit, “Effect of electron flow direction on model parameters of electromigration-induced failure of copper interconnects”, J. Appl. Phys. 94, 6463 (2003).
    12. M. Hayashi, S. Nakano and T. Wada, “Dependence of copper interconnect electromigration phenomenon on barrier metal materials”, Microelectron. Reliab. 43, 1545 (2003).
    13. C. Ryu, K. W. Kwon, A. L. S. Loke, H. Lee, T. Nogami, V. M. Dubin, R. A. Kavari, G. W. Ray and S. S. Wong, “Microstructure and reliability of copper interconnects”, IEEE Trans. Electron. Devices 46, 1113 (1999).
    14. G. B. Alers, D. Dornisch, J. Siri, K. Kattige, L. Tam, E. Broadbent and G. W. Ray, “Trade-off between reliability and post-CMP defects during recrystallization anneal for copper damascene interconnects”, IEEE 01CH37167, Proceedings of the 39th Annual International Reliability Physics Symposium (2001), 350.
    15. L. Vanasupa, Y. C. Joo, P. R. Besser and S. Pramanick, “Texture analysis of damascene-fabricated Cu lines by x-ray diffraction and electron backscatter diffraction and its impact on electromigration performance”, J. Appl. Phys. 85, 2583 (1999).
    16. C. K. Hu, R. Rosenberg, H. S. Rathore, D. B. Nguyen, and B. Agarwala, “Scaling effect on electromigration in on-chip wiring”, Proceedings of IEEE International Interconnect Technology Conference (IEEE, Piscataway, NJ, 1999) p. 267.
    17. C. S. Hau-Riege and C. V. Thompson, “Electromigration in Cu interconnects with very different grain structures”, Appl. Phys. Lett. 78, 3451 (2001).
    18. A. Von Glasow, A. H. Fischer, and S. Penka, “EM and SM investigations on. dual damascene Cu interconnects”, Advanced Metallization Conference (Materials Research Society, Warrendale, PA, 2001) p. 433.
    19. A. V. Vairagar, S. G. Mhaisalkar, and A. Krishnamoorthy, “Effect of surface treatment on electromigration in sub-micron Cu damascene interconnects”, Thin Solid Films. 462-463, 325 (2004).
    20. C.-K. Hu, L. Gignac, R. Rosenberg, E. Liniger, J. Rubino, C. Sambucetti, A. Domenicucci, X. Chen, and A. K. Stamper, “Reduced electromigration of Cu wires by surface coating”, Appl. Phys. Lett. 81, 1782 (2002).
    21. C.-K. Hu, L. Gignac, E. Liniger, B. Herbst, D. L. Rath, S. T. Chen, S. Kaldor, A. Simon, and W.-T. Tseng, “Comparison of Cu electromigration lifetime in Cu interconnects coated with various caps”, Appl. Phys. Lett. 83, 869 (2003).
    22. S. Yokogawa, Y. Kakuhara, H. Tsuchiya, and K. Kikuta, “Analytical study of impurity doping effects on electromigration of Cu interconnects by employing comprehensive scattering model”, 45st Annual Int. Rel. Phy. Symp. (2007), 117.
    23. P. V. Andrews, M. B. West, and C. R. Robeson, “The effect of grain boundaries on the electrical resistivity of polycrystalline copper and aluminium”, Philos. Mag. 19, 887 (1969).
    24. M. Gerardin, Compt. Rend. 53, 727 (1861).
    25. M. W. Lane, E. G. Liniger, and J. R. Lloyd, “Relationship between interfacial adhesion and electromigration in Cu metallization”, J. Appl. Phys. 93, 1417 (2003).
    26. E. Liniger, L. Gignac, C. K. Hu, and S. Kaldor, “In situ study of void growth kinetics in electroplated Cu lines”, J. Appl. Phys. 92, 1803 (2002).
    27. V. B. Fiks, “Mechanism of ion mobility in metals”, Sov. Phys.-Solid State 1, 14 (1959).
    28. H. B. Hungtington and A. R. Grone, “Current-induced marker motion in gold wires”, J. Phys. Chem. Solids 20, 76 (1961).
    29. J. P. Dekker and A. Lodder, “Calculated electromigration wind force in face-centered-cubic and body-centered-cubic metals”, J. Appl. Phys. 84, 1958 (1998).
    30. R. S. Sorbello, “Theory of the direct force in electromigration”, Phys. Rev. B 31, 798 (1985).
    31. R. P. Gupta, “Theory of electromigration in noble and transition metals”, Phys. Rev. B 25, 5188 (1982).
    32. K. N. Tu, “Electronic Thin Film Science for Electrical Engineers and Materials Scientists”, New York, Macmillan, 1992.
    33. C.-K. Hu, L. Gignac, and R. Rosenberg, “Electromigration of Cu/low dielectric constant interconnects”, Microelectron. Reliab. 46, 213 (2006).
    34. S. J. Rothman and N. L. Peterson, “Isotope effect and divacancies for self-Diffusion in copper”, Phys. Status Solidi 35, 305 (1969).
    35. C. K. Hu and S. Reynolds, “Chemical vapor deposition copper interconnections and electromigration”, Proceedings of the 4th International Conference, Chemical Vapor Deposition (Electrochemical Society, Inc., Pennington, NJ, 1997), PV 97-25, 1514.
    36. C.-K. Hu, L. Gignac, S. G. Malhotra, and R. Rosenberg, “Mechanisms for very long electromigration lifetime in dual-damascene Cu interconnections”, Appl. Phys. Lett. 78, 904 (2001).
    37. R. W. Vook, “Electrical control of surface electromigration damage”, Thin Solid Films, 305, 286 (1997).
    38. D. B. Butrympwicz, J. R. Manning, and M. E. Read, “Diffusion in copper and copper alloys part V. diffusion in systems involving elements of group VA”, J. Phys. Chem. Ref. Data 6, 1 (1977).
    39. H. P. Bonzel, in Surface Physics of Materials, edited by J. M. Blakly (Academic, New York, 1975), Vol. □□, Chap. 6.
    40. F. J. Bradshaw, R. H. Bradon, and C. Wheeler, “The surface self-diffusion of copper as affected by environment”, Acta. Metall. 12, 1057 (1964).
    41. T. Surholt, Y. M. Mishin, and Chr. Hertzig, “Grain-boundary diffusion and segregation of gold in copper: Investigation in the type-B and type-C kinetic regimes”, Phys. Rev. B 50, 3577 (1994).
    42. D. Gupta, C. K. Hu, and K. L. Lee, “Grain boundary diffusion and electromigration in Cu-Sn alloy thin films and their VLSI interconnects”, Defect Diffus. Forum 143, 1397 (1997).
    43. I. A. Blech, “Electromigration in thin aluminum films on titanium nitride”, J. Appl. Phys. 47, 1203 (1976).
    44. C. L. Gan, C. V. Thompson, K. L. Pey, and W. K. Choi, “Experimental characterization and modeling of the reliability of three-terminal dual-damascene Cu interconnect trees”, J. Appl. Phys. 94, 1222 (2003).
    45. P. C. Wang and R. G. Filippi, “Electromigration threshold in copper interconnects”, Appl. Phys. Lett. 78, 3598 (2001).
    46. J. R. Black, “Mass transport of an aluminum by momentum exchange with conducting electrons”, Proc 6th Annual Int. Rel. Phy. Symp. (1967), 148.
    47. S. P. Hau-Riege, “Probabilistic immortality of Cu damascene interconnects”, J. Appl. Phys. 91, 2014 (2002).
    48. K. D. Lee, E. T. Ogawa, H. Matsuhashi, P. R. Justison, K. S. Ko, and P. S. Ho, “Electromigration critical length effect in Cu/oxide dual-damascene interconnects”, Appl. Phys. Lett. 79, 3236 (2001).
    49. C. K. Hu, R. Rosenberg, W. Klaasen, and A. K. Stamper, “Electromigration reliability study of submicron Cu interconnections”, Adv. Metal. Conf. (1999), 2945.
    50. C. S. Hau-Riege, A. P. Marathe, “The effect of low-k ILD on the electromigration reliability of Cu interconnects with different line lengths”, 41st Annual Int. Rel. Phy. Symp. (2003), 173.
    51. L. Arnaud, G. Tartavel, T. Berger, D. Mariolle, Y. Gobil, and I. Touet, Microelectron. Reliab. 40, 77 (2000).
    52. L. Arnaud, R. Gonella, G. Tartavel, J. Torres, C. Gounelle, Y. Gobil, and Y. Morand, Microelectron. Reliab. 38, 1029 (1998).
    53. C. S. Hau-Riege and A. P. Marathe, “The effect of line length on the electromigration reliability of Cu interconnects”, Adv. Metal. Conf. (2002), 169
    54. R. Kircheim and U. Kaeber, “Atomistic and computer modeling of metallization failure of integrated circuits by electromigration”, J. Appl. Phys. 70, 172 (1991).
    55. F. Fantini, J. R. Lloyd, I. DeMunari, and A. Scorzoni, “Electromigration testing of integrated circuit interconnections”, Microelectron. Eng. 40, 207 (1998).
    56. S. Vaidya, T. T. Sheng,and A. K. Sinha, “Linewidth dependence of electromigration in evaporated Al-0.5%Cu”, Appl. Phys. Lett. 36, 464 (1980).
    57. A. S. Oates and D. L. Barr, “Lattice electromigration in narrow Al alloy thin-film conductors at low temperatures”, J. Electron. Mater. 23, 63 (1994).
    58. Y. C. Joo and C. V. Thompson, “Analytic model for the grain structures of near-bamboo interconnects”, J. Appl. Phys. 76, 7339 (1994).
    59. F. d’Heurle and I. Ames, “Electromigration in single-crystal aluminum films”, Appl. Phys. Lett. 16, 80 (1970).
    60. S. Vaidya and A. K. Sinha, “Effect of texture and grain structure on electromigration in Al-0.5%Cu thin films”, Thin Solid Films, 75, 253 (1981).
    61. A. N. Campbell, R. E. Mikawa, and D. B. Knorr, “Relationship between texture and electromigration lifetime in sputtered Al-1%Si thin films”, J. Electron. Mater. 22, 589 (1993).
    62. D. B. Knorr and D. P. Tracy, “Correlation of texture with electromigration behavior in Al metallization”, Appl. Phys. Lett. 59, 3241 (1991).
    63. B. N. Agarwala, B. Patnaik, and R. Schnitzel, “Effect of microstructure on the electromigration lifetime of Thin-Film Al-Cu Conductors”, J. Appl. Phys. 43, 1487 (1972).
    64. K. Abe, Y. Harada, and H. Onoda, “Study of crystal orientation in Cu film on TiN layered structures”, J. Vac. Sci. Technol. B 17, 1464 (1999).
    65. H. Wendrock, K. Mirpuri, S. Menzel, G. Schindler, and K. Wetzig, “Correlation of electromigration defects in small damascene Cu interconnects with their microstructure”, Microelectron. Engin. 82, 660 (2005).
    66. T. G. Koetter, H. Wendrock, H. Schuehrer, C. Wenzel, and K. Wetzig, “Relationship between microstructure and electromigration damage in unpassivated PVD copper damascene interconnects”, Microelectron. Reliab. 40, 1295 (2000).
    67. J. A. Nucci, R. R. Keller, J. E. Sanchez, and Y. S. Diamand, “Local crystallographic texture and voiding in passivated copper interconnects” Appl. Phys. Lett. 69, 4017 (1996).
    68. K. N. Tu, C. C. Yeh, C. Y. Liu, and C. Chen, “Effect of current crowding on vacancy diffusion and void formation in electromigration”, Appl. Phys. Lett. 76, 988 (2000).
    69. H. Wang, C. Bruynseraede, and K. Maex, “Impact of current crowding on electromigration-induced mass transport”, Appl. Phys. Lett. 84, 517 (2004).
    70. H. Okabayashi, H. Kitamura, M. Komatsu, and H. Mori, “In-situ side-view observation of electromigration in layered Al lines by ultrahigh voltage transmission electron microscopy” AIP Conf. Proc. 373, 214 (1996).
    71. J. R. Lloyd, “Comment on Effect of current crowding on vacancy diffusion and void formation in electromigration”, Appl. Phys. Lett. 79, 1061 (2001).
    72. K. N. Tu, “Response to Comment on Effect of current crowding on vacancy diffusion and void formation in electromigration”, Appl. Phys. Lett. 79, 1063 (2001).
    73. C. K. Hu, D. Canaperi, S. T. Chen, L. M. Gignac, S. Kaldor, M. Krishnan, S. G. Malhotra, E. Liniger, J. R. Lloyd, D. L. Rath, D. Restaino, R. Rosenberg, J. Rubino, S. C. Seo, A. Simon, S. Smith, and W. T. Tseng, “Electromigration Cu mass flow in Cu interconnections”, Thin Solid Films, 504, 274 (2006).
    74. C. K. Hu, L. M. Gignac, R. Rosenberg, B. Herbst, S. Smith, J. Rubino, D. Canaperi, S. T. Chen, S. C. Seo, and D. Restaino, “Atom motion of Cu and Co in Cu damascene lines with a CoWP cap”, Appl. Phys. Lett. 84, 4986 (2004).
    75. M. H. Yun, V. A. Burrows, and M. N. Kozicki, “Analysis of KOH Etching of (100) Si on Insulator for the Fabrication of Nanoscale Tips”, J. Vac. Sci. Technol. B 16, 2844 (1998).
    76. J. H. Correia, M. Bartek, and R. F. Wolffenbuttel, “Load-deflection of a low-stress SiN-membrane/Si-frame composite diaphragm”, Proceedings of First International Conference on Modeling and Simulation of Microsystems, Semiconductors, Sensors and Actuators, (1998), 563.
    77. O. Kraft and E. Arzt, “Numerical simulation of electromigration-induced shape changes of voids in bamboo lines”, Appl. Phys. Lett. 66, 2063 (1995).
    78. C. L. Liu, J. M. Cohen, J. B. Adams and A. F. Voter, “EAM study of surface self-diffusion of single adatoms of FCC metals Ni, Cu, Al, Ag, Au, Pd, and Pt”, Surf. Sci. 253, 334 (1991).
    79. M. Karimi and T. Tomkowski, “Diffusion of Cu on Cu surfaces”, Phys. Rev. B 52, 5364 (1995).
    80. A. Magnaterra, “Structure factor and resistivity of Cu and Ag”, Phys. Lett. 44A, 63 (1973).
    81. D. Cherns, “Direct resolution of surface atomic steps by transmission electron microscopy”, Philos. Mag. 30, 549 (1974).
    82. A. I. Kirkland, D. A. Jefferson, D. G. Duff, P. P. Edwards, I. Gameson, B. F. G. Johnson, and D. J. Smith, “Structural studies of trigonal lamellar particles of gold and silver”, Proc. R. Soc. London , 440, 589 (1993).
    83. D. W. Pashley and M. J. Stowell, “Electron microscopy and diffraction of twinned structures in evaporated films of gold”, Philos. Mag. 8, 1605 (1963).
    84. D. C. Bell, Y. Wu, C. J. Barrelet, S. Gradecak, J. Xiang, B. P. Timko, and C. M. Lieber, “Imaging and analysis of nanowires”, Microsc. Res. Tech. 64, 373 (2004).
    85. J. J. Chu, L. J. Chen, and K. N. Tu, “Localized epitaxial growth of IrSi on (111) and (001) silicon” J. Appl. Phys. 62, 461 (1987).
    86. V. Germain, J. Li, D. Ingert, Z. L. Wang, and M. P Pileni, “Stacking faults in formation of silver nanodisks”, J. Phys. Chem.B 107, 8717 (2003).
    87. A. Gladkik, M. Karpovski, A. Palevski, and Y. S. Kaganovski, “Effect of microstructure on electromigration kinetics in Cu lines”, J. Phys. D: Appl. Phys. 31, 1626 (1998).
    88. A. Gladkik, Y. Lereah, M. Karpovski, A. Palevski, and Y. S. Kaganovski, “Activation energy of electromigration in copper thin film conductor lines”, Mat. Res. Soc. Symp. Proc. 428, 55 (1996).
    89. R. Rosenberg and M. Ohring, “Void formation and growth during electromigration in thin films”, J. Appl. Phys. 42, 5671 (1971).
    90. W. T. Read and W. Shockley, “Dislocation models of crystal grain boundaries”, Phys. Rev. 78, 275 (1950).
    91. S. C. Wardle, B. L. Adams, C. S. Nichols, and D. A. Smith, Mat. Res. Soc. Symp. Proc. 343, 666 (1994).
    92. J. A. Nucci, R. R. Keller, D. P. Field, and Y. S. Diamand, “Grain boundary misorientation angles and stress-induced voiding in oxide passivated copper interconnects”, Appl.Phys.Lett. 70, 1242 (1997).
    93. R. L. Fullman, “Interfacial free energy of coherent twin boundaries in copper”, J. Appl. Phys. 22, 448 (1951).
    94. S. G. Wang, E. K. Tian, and C. W. Lung, “Surface energy of arbitrary crystal plane of bcc and fcc metals”, J. Phys. Chem. Solids. 61, 1295 (2000).
    95. N. Bernstein and E. B. Tadmor, “Tight-binding calculations of stacking energies and twinnability in fcc metals”, Phys. Rev. B 69, 094116 (2004).
    96. Q. Li, J. R. Cahoon, and N. L. Richards, “On the calculation of annealing twin density”, Script Mater. 55, 1155 (2006).
    97. L. Xu, P. Dixit, J. Miao, J. H. L. Pang, X. Zhang, K. N. Tu, and R. Preisser, “Through-wafer electroplated copper interconnect with ultrafine grains and high density of nanotwins”, Appl.Phys.Lett. 90, 033111 (2007).
    98. A. P. Sutton and R. W. Balluffi, Interface in Crystalline Materials Oxford publishing: Clarendon, (1995).
    99. V. K. Srivastava, R. Chatterjee, and R. C. O’Handley, “Effect of twin boundaries on electrical transport in a Ni-Mn-Ga single crystal”, Appl. Phys. Lett. 89, 222107 (2006).
    100. J. Enkovaara, A. Ayuela, A. T. Zayak, P. Entel, L. NordstrÖm, M. Dube, J. Jalkanen, J. Impola, and R. M. Nieminen, “Magnetically driven shape memory alloys”, Mater. Sci. Eng. A 378, 52 (2004).
    101. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, “Ultrahigh strength and high electrical conductivity in copper”, Science, 304, 422 (2004).
    102. X. Zhang, H. Wang, X. H. Chen, L. Lu, K. Lu, R. G. Hoagland, and A. Misra, “High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins”, Appl. Phys. Lett. 88, 173116 (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE