研究生: |
沙提斯 SATISH MADHAV GHORPADE |
---|---|
論文名稱: |
過渡金屬催化不同的烯炔類進行有機反應, 氧化加成, 環化作用及二聚體環化 Transition Metals Catalyzed Organic Transformations, Oxidative Cycloadditions, Cyclizations and Dimeric Cyclizations on Diverse Enynes |
指導教授: | 劉瑞雄 |
口試委員: |
蔡易州
孫仲銘 莊士卿 陳銘洲 劉瑞雄 |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2014 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 598 |
中文關鍵詞: | 金催化反應 、銅催化反應 、氧化環化反應 、氧化二聚體環化反應 、金屬碳烯化合物 |
外文關鍵詞: | Gold catalysis, Copper catalysis, Oxidative cyclisation, Oxidative dimerisation, Metal carbene |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
簡介
本文介紹了利用金與銅的鹽類合成新型有機轉換化反應的發展。使用軟alkynophilic金屬使廣泛的各種各樣的現成的基質進行溫和的、非鏡像選擇性和高效轉換來合成生物學上重要的含氮雜環產物。為了更好地理解,本文分為四個章節。
第一章論述了cis-3-En-1-ynes的金催化氧化環化反應產生環戊烯酮衍生物。用於合成環戊烯酮衍生物的此反應使用了金錯合物和8-甲基喹啉氧化物作為催化劑基底。這類反應適用於範圍廣泛的苯環和非苯環衍生的起始物,從而得到各種茚酮和環戊烯酮衍生物。欲獲得這類的產物不能使用與diazocarbonyl試劑一同反應,因為金的碳烯化合物往往與碳氫鍵進行反應。
第二章討論1,4–烯炔類的金催化氧化環化反應被用來研究Wagner–Meerwein重排的γ效應。實驗和理論預測都證實了金的取代基中的γ位置可以導引抗 anti-β-取代基進行立體位向確定的1,2移位,而無視其固有特性。
第三章介紹了3,5-和3,6-dienynes金催化的反應與8-烷基喹啉氧化物產生氧化環高立體位向選擇性,這個過程涉及喹啉架構的催化活性。其反應機制包括α-羰基吡啶鎓內鹽(I)的中間產物與拘束的烯烴類一起產生的[3+2]-環加成反應。
第四章所介紹的研究目的是利用廉價的叔胺類化合物的銅催化氧化反應進行一步的合成複雜而重要的分子結構。N-hydroxyaminopropenes經由銅催化的含氧的氧化反應形成具有C2對稱並含氮和氧的官能化環己烷。
ABSTRACT
This dissertation describes development of new synthetic organic transformations by using gold and copper salts. The use of these soft alkynophilic metals enables mild, diastereoselective and efficient transformations of a variety of readily available substrates to wide range of synthetically useful and biologically important N, O containing heterocyclic and carbocyclic products. For better understanding the thesis is divided into four chapters.
The first chapter deals with the Gold-catalyzed oxidative cyclizations of cis-3-En-1-ynes to form cyclopentenone derivatives. The title reaction for synthesizing cyclopentenone derivatives utilizes a gold complex and 8-methylquinoline oxide as the catalyst system. The value of such reactions is reflected by their applicability to a broad range of benzene- and nonbenzene-derived substrates, thus giving various indanone and cyclopentenone derivatives, respectively. Such products are not attainable using diazocarbonyl reagents, as the gold carbenoids tend to react with C-H bonds.
The second chapter deals with the gold-catalyzed oxidative cyclizations of 1,4-enynes were used to study the γ-effect on the Wagner–Meerwein rearrangement. Both experimental and theoretical work disclose that a gold substituent in the γ-position can direct a stereospecific 1,2 shift of the anti-β-substituent regardless of its intrinsic properties.
The third chapter describes gold-catalyzed reactions of 3,5- and 3,6-dienynes with 8-alkyl- quinoline oxides results in an oxidative cycloaddition with high stereospecificity, this process involves a catalytic activation of a quinoline framework. The reaction mechanism involves the intermediacy of α-carbonyl pyridinium ylides (I) in a concerted [3+2]-cycloaddition with a tethered alkene.
The fourth chapter presents the work aim at one-step construction of complex and important molecular frameworks via Cu-catalyzed oxidations of cheap tertiary amines. Cu-catalyzed aerobic oxidations of N-hydroxyaminopropenes to form C2-symmetric N- and O-functionalized cyclohexanes.
Chapter1
1. (a) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (b) Lloyd-Jones, G. C. Org. Biomol. Chem. 2003, 1, 215. (c) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317. (d) Hoffmann-Ro¨der, A.; Krause, N. Org. Biomol. Chem. 2005, 3, 387. (e) Ma, S.; Yu, S.; Gu, Z. Angew. Chem., Int. Ed. 2006, 45, 200. (f) Bruneau, C. Angew. Chem., Int. Ed. 2005, 44, 2328.
2. (a) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem., Int. Ed. 2006, 45, 7896. (b) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180.
3. (a) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431. (b) Echavarren, A. M.; Me´ndez, M.; Mun˜oz, M. P.; Nevado, C.; Martı´n-Matute, B.; Nieto-Oberhuber, C.; Ca´rdenas, D. J. Pure Appl. Chem. 2004, 76, 453. (c) Jime´nez-Nu´n˜ez, E.; Echavarren, A. M. Chem. Commun. 2007, 333.
4. Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271.
5. Fu¨rstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410.
6. Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395.
7. For gold catalysts, see selected reviews: (a) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (b) Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271. (c) Hashmi; A.S. K. Chem. Rev. 2007, 107, 3180. (d) Ma, S.; Yu, S.; Gu, Z. Angew. Chem. Int. Ed. 2006, 45, 200. (e) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431. (f) Abu Sohel, S. M.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269. (g) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem.Rev., 2008, 108, 3351.
8. For other metal catalysts, see selected reviews: (a) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (b) Trost, B. M.; Krische, M. J. Synlett. 1998, 1. (c) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067. (d) Trost, B. M. Chem. Eur. J. 1998, 4, 2405. (e) Ojima, I.; Tzamarioudaki, M.; Li, Z. Y.; Donovan, R. J. Chem. Rev. 1996, 96, 635. (f) Lloyd-Jones, G. C. Org. Biomol. Chem. 2003, 1, 215; (g) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317. (i) Liu, R.-S. Synlett. 2008, 801.
9. (a) Hashmi, A. S. K.; Rudolph, M. Chem. Soc. Rev. 2008, 37, 1766. b) Jiménez-Núñez, E.; Molawi, K.; Echavarren, A. M. Chem. Commun. 2009, 7327. (c) Molawi, K.; Delpont, N.; Echavarren, A. M. Angew. Chem. 2010, 122, 3595; Angew. Chem. Int. Ed. 2010, 49, 3517. (d) Fürstner, A. Hannen, P. Chem. Eur. J. 2006, 12, 3006. (e) Fürstner, A. Hannen, P. Chem. Commun. 2004, 2546. (f) Linghu, X.; Kennedy-Smith, J. J.; Toste, F. D. Angew. Chem. 2007, 119, 7815; Angew. Chem. Int. Ed. 2007, 46, 7671. (g) Hashmi, A. S. K.; Ding, L.; Bats, P. Fisher, J. W.; Frey, W. Chem. Eur. J. 2003, 9, 4339; (h) Couty, S.; Meyer, C.; Cossy, J. Angew. Chem. 2006, 118, 6878; Angew. Chem. Int. Ed. 2006, 45, 6726.
10. For Pd catalysts, see: (a) Welbes, L. L.; Lyons, T. W.; Cychosz, K. A.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 5836. (b) Tong, X.; Beller, M.; Tse, M. K. J. Am. Chem. Soc. 2007, 129, 4905. (c) Yin, G.; Liu, G. Angew. Chem. 2008, 120, 5522; Angew. Chem. Int. Ed. 2008, 47, 5442. (d) Tsujihara, T.; Takenaka, K.; Onitsuka, K.; Hatanaka, M.; M.; Sasai, H. J. Am. Chem. Soc. 2009, 131, 3452.
11.For gold catalysts, see (a) Witham, C. A.; Mauleón, P.; Shapiro N. D.; Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 5838. (b) Taduri, B. P.; Abu Sohel, S. M.; Cheng H.-M.; Liu, R.-S. Chem. Commu. 2007, 2530. (c) Vasu, D.; Hung, H.-H.; Bhunia, S.; Gawade, S. A.; Das, A.; Liu, R.-S. Angew. Chem. 2011, 123, 7043; Angew. Chem. Int. Ed. 2011, 50, 6911.
12. Organic Chemistry Morrison, R.T.; Boyd, R.N. pp. 473-478.
13. (a) Hashmi, A. S. K. Gold Bull. 2003, 36, 3. (b) Hashmi, A. S. K. Gold Bull. 2004, 37, 51. (c) Hoffmann-Roder, A.; Krause, N. Org. Biomol. Chem. 2005, 3,387. (d) Ma, S.; Yu, S.; Gu, Z. Angew. Chem., Int. Ed. 2005, 44, 200. (e) Hashmi, A. S. K. Angew. Chem., Int. Ed. 2005, 44, 6990. (f) Furstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410. (g) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239. (h) Gorin, D. J.; Sjerry; B. D.; Toste, F.D. Chem. Rev. 2008, 108, 3351. (i) Hashmi, A. S. K.; Rudolph, M. Chem. Soc. Rev. 2008, 37, 1766. (j) Cuenca, A. B.; Montserrat, S.; Hossain, K. M.; Mancha, G.; Lledos, A.; Medio- Simon, M.; Ujaque, G.; Asensio, G. Org. Lett. 2009, 11, 4906. (k) Bandini, M. Chem. Soc. Rev. 2011, 40, 1358. (l) Wang, S.; Zhang, G.; Zhang, L. Synlett. 2010, 692.
14. Xiao, J.; Li, X. Angew. Chem., Int. Ed. 2011, 50, 7226.
15. (a) Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 4160. (b) Li, G.; Zhang, L. Angew. Chem., Int. Ed. 2007, 46, 5156.
16. (a) Yeom, H. S.; Lee, J. E.; Shin, S. Angew. Chem., Int. Ed. 2008, 47, 7040. (b) Yeom, H. S.; Lee, Y.; Jeong, J.; So, E.; Hwang, S.; Lee, J. E.; Lee, S. S.; Shin, S. Angew. Chem., Int. Ed. 2010, 9, 1611.
17. (a) Lin, G-Y.; Li, C-W.; Hung, S-H.; Liu, R-S. Org. Lett. 2008, 10, 5059. (b) Hashmi, A. S. K.; Bührle, M.; Salathé, R.; Bats, J. Adv. Synth. Catal. 2008, 350, 2059.
18. Jadhav, A. M.; Bhunia, S.; Liao, H-Y.; Liu, R-S. J. Am. Chem. Soc. 2011, 133, 1769.
19. (a) Cui, L.; Peng, Y.; Zhang, L. J. Am. Chem. Soc. 2009, 131, 8394. b) Cui, L.; Ye, L.; Zhang, L. Chem. Comm. 2010, 46, 3351.
20. (a) Ye, L.; He, W.; Zhang, L. Angew. Chem., Int. Ed. 2011, 50, 3236. (b) He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482.. (c) Ye, L.; He, W.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 8550. (d) Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258. (e) Lu, B.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 14070.
21. (a) Cuenca, A. B.; Montserrai, S.; Hossain, K. M.; Mancha, G.; Lledos, A.; Medio-Simon, M.; Ujaque, G.; Asensio, G. Org. Lett. 2009, 11, 4906. (b) Li, C-W.; Pati, K.; Lin, G-Y.; Sohel, S. M. A.; Hung, H-H.; Liu, R-S. Angew, Chem., Int, Ed. 2010, 49, 9891.
22. Zhong, H. A.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 2002, 124, 1378.
23. Doyle, M.; McKervey, M.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides; Wiley: New York, 1998.
24. Dorwald, F. Z. Metal Carbenes in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 1999.
25. Davies, H. M. L.; Antoulinakis, E. G. Org. React. (New York) 2001, 57, 1.
26. (a) Müller, P.; Fernandez, D. Helv. Chim. Acta 1995, 78, 947. (b) Müller, P.; Baud, C.; Jacquier, Y.; Moran, M.; Nageli, I. J. Phys. Org. Chem. 1996, 9, 341. (c) Lee, Y. R.; Cho, B. S. Bull. Korean Chem. Soc. 2002, 23, 779. (d) Zhou, X.-G.; Yu, X.-Q.; Huang, J.-S.; Che, C.-M. Chem. Commun. 1999, 2377. (e) Müller, P.; Bolea, C. Helv. Chim. Acta. 2002, 85, 483. (f) Müller, P.; Bolea, C. Molecules 2001, 6, 258. (g) Müller, P.; Fernandez, D.; Nury, P.; Rossier, J.-C. Helv. Chim. Acta 1999, 82, 935. (h) Müller, P.; Fernandez, D.; Nury, P.; Rossier, J.-C. J. Phys. Org. Chem. 1998, 11, 321.
27. (a) Patil, N. T.; Yamamoto, Y. Chem. Rev., 2008, 108, 3395. (b) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. (c) Li, J.; Brouwer, C.; He, C. Chem. Rev., 2008, 108, 3239; (d) Jiménez-Núñez, E. J.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (e) Arcadi, A. Chem. Rev. 2008, 108, 3266. (f) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. (g) Chianese, A. R.; Lee, S. J.; Gagné, M. R. Angew. Chem., Int. Ed., 2007, 46, 4042. (h) Gorin, D. J.; Toste, F. D. Nature, 2007, 446, 395. (j) Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271. (k) Fürstner, A.; Davies, P.W. Angew. Chem., Int. Ed. 2007, 46, 3410. (l) Michelet, V.; Toullec, P. Y.; Genêt, J.-P. Angew. Chem., Int. Ed. 2008, 47, 4268. (m) Crone, B.; Kirsh, S. F. Chem.–Eur. J. 2008, 14, 3514. (n) Hahn, C. Chem.–Eur. J. 2004, 10, 5888. (o) Sohel, S.M. A.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269.
28. (a) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208. (b) Soriano, E.; Mar- Contelles, J. Acc. Chem. Res. 2009, 42, 1026. (c) Lee, S. I.; Chatani, N. Chem. Commun. 2009, 371. (d) Kirsch, S. F. Synthesis. 2008, 3183. (e) J.Muzart, Tetrahedron, 2008, 64, 5815. (f) Widenhoefer, R. A. Chem.–Eur. J. 2008, 14, 5382. (g) Hashmi, A. S. K. Angew. Chem., Int. Ed. 2008, 47, 6754. (h) Bongers, N.; Krause, N. Angew. Chem. Int. Ed. 2008, 47, 2178. (i) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2005, 44, 6990. (j) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431. (k) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317.
29. Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861.
30. For reactions of Au–carbenoid intermediates, see: (a) Luzung, M. R.; Markham, J. P.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 10858. (b) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, D. F. J. Am. Chem. Soc. 2005, 127, 18002. (c) Nieto-Oberhuber, C.; Muñoz, M. P.; Buñuel, E.; Nevado, C.; Cárdenas, D. J.; Echavarren, A. M. Angew. Chem. 2004, 116, 2456; Angew. Chem. Int. Ed. 2004, 43, 2402. (d) Prasad, B. A. B.; Yoshimoto, F. K.; Sarpong, R. J. Am. Chem. Soc. 2005, 127, 12468. (e) Taduri, B. P.; Ran, Y.-F.; Huang, C.-W.; Liu, R.-S. Org. Lett. 2006, 8, 883.
31. Nieto-Oberhuber, C.; López, S.; Jiménez-Núñez, E.; Echavarren, A. M. Chem. Eur. J. 2006, 12, 1677.
32. Taduri, B. P.; Sohel, S. M. A.; cheng, H.-M.; Lin, G.-U.; Liu, R.-S. Chem. Comun. 2007, 2530.
33. Oxidation of metal-carbenes by others transition-metals, see: (a) Barluenga, J.; Bernad, P. L.; Concellon, J. M.; Pinera-Nicolas, A.; Carcia-Granda, S. J. Org. Chem. 1997, 62, 6870. (b) Barrett, A. G.; mortier, J.; Sabat, M.; Sturgess, M. A. Organometallics. 1988, 7, 2553. (c) Liang, W.-k.; Li, W.-T.; Peng, S.-M.; Wang, S.-L.; Liu, R.-S. J. Am. Chem. Soc. 1997, 119, 4404. (d) Quayle, P.; Rahman, S.; Ward, E. L. M. Tetradhedron Lett. 1994, 35, 3801. (e) Miki, K.; Yokoi, T.; nishino, F.; Ohe, K.; Uemura, S. J. Organometal. Chem. 2002, 645, 228. (f) Trost, B. M.; Rhee, Y. H. J. Am. Chem. Soc. 1999, 121, 11680. (g) Shin, S.; Gupta, A. K.; Rhim, C. Y.; Oh, C. H. Chem. Comun. 2005, 4429.
34. Generation of α-carbonyl gold carbenoids via the oxidations of alkynes with pyridine-based oxides, see: a) Xiao, J.; Li. X. Angew. Chem. 2011, 123, 7364; Angew. Chem., Int. Ed. 2011, 50, 7226. b) Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258. c) Ye, L. He, W.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 8550. d) Ye, L.; He, W.; Zhang. L. Angew. Chem. 2011, 123, 3294; Angew. Chem. Int. Ed. 2011, 50, 3236. e) He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482. f) Li, C.; Zhang, L. Org Lett, 2011, 13, 1738. g) He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 13, 1738.
35. For gold catalysts, see a) Witham, C. A.; Mauleón, P.; Shapiro, N. D.; Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 5838. b) Taduri, B. P.; Abu Sohel, S. M.; Cheng, H.-M.; Liu, R.-S. Chem. Commu. 2007, 2530. c) Vasu, D.; Hung, H.-H.; Bhunia, S.; Gawade, S. A.; Das, A.; Liu. R.-S. Angew. Chem. 2011, 123, 7043; Angew. Chem. Int. Ed. 2011, 50, 6911.
36. a) Datta, S.; Odedra, A.; Liu, R.-S. J. Am. Chem. Soc. 2005, 127, 11606. b) Odedra, A.; Datta, S.; Liu. R.-S. J. Org. Chem. 2007, 72, 3289. c) Yang, S.; Li, Z.; Jian, X.; He. C. Angew. Chem. 2009, 121, 4059; Angew. Chem., Int. Ed. 2009, 48, 3999. d) Tobisu, M.; Nakai, H.; Chatani, N. J. Org. Chem. 2009, 74, 5471. e) Bajracharya, G. B.; Pahadi, N. K.; Gridnev I. D.; Yamamoto, Y. J. Org. Chem. 2006, 71, 6204. f) Okamura, W. H.; Delera, A. R. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, UK, 1991; Vol.5, Part 6.2, p 699.
37. Recent review for α-carbonyl gold carbenoids, see: Xiao, J.; Li, X. Angew. Chem. 2011, 123, 7364; Angew. Chem. Int. Ed. 2011, 50, 7226.
38. Horino, Y.; Yamamoto, T.; Ueda, K.; Kuroda, S.; Toste, F. D. J. Am. Chem. Soc. 2011, 131, 2809.
39. For the insertion of a gold-carbenoid into a sp3 C-H bond, see: a) Li, C.; Yu, P.; Zhang, L. J. Am. Chem. Soc. 2009, 131, 2811. b) Bhunia, S.; Liu, R.-S. J. Am. Chem. Soc. 2008, 130, 16488. c) Hashmi, A. S. K.; Schafer, S.; Wolfle, M.; Gil, C. D.; Fischer, P.; Laguna, A.; Blanco, M. C.; Gimenco, M. C. Angew. Chem. 2007, 119, 6297; Angew. Chem. Int. Ed. 2007, 46, 6184. d) Fructos, M. R.; Belderrain, T. R.; de Frémont, P.; Scott, N. M.; Nolan S. P.; Díaz-Requejo, M. M.; Pérez, P. J. Angew. Chem. 2005, 117, 5418; Angew. Chem. Int. Ed. 2005, 44, 5284. e) Fructos, M. R.; de Frémont, P.; Nolan, S. P.; Díaz-Requejo, M. M.; Pérez, P. J. Organometallics, 2006, 25, 2237.
40. a) Taber, D. F. in “Comprehensive Organic Synthesis” ed. B. M. Trost, Pergamon, New York, 1991, vol. 3, chap. 3, p. 63. b) Doyle, M. P. Chem. Rev. 1986, 86, 919. c) Doyle, M. P.; Westrum, L. J.; Wolthuis, W. N. E.; See, M. M.; Boone, M. P.; Bagheri, V.; Pearson, M. J. Am. Chem. Soc. 1993, 115, 958. d) Taber, D. F.; Petty, E. H.; Raman, K. J. Am. Chem. Soc. 1985, 107, 196.
41. We are unsure about the mechanism for aldehyde 9a. A tentative mechanism is proposed
42. A 1,5-hydrogen shift is a common process for cis-substituted dienes; see: a) Robin, M. J.; Guo, Z. O.; Samano, M. C.; Wnuk, S. F. J. Am. Chem. Soc. 1999, 121, 1425. b) Chandraratna, R. A. S.; Bayerque, A. L.; Okamura, W. A. J. Am. Chem. Soc. 1983, 105, 3588. c) Alabugin, I. V.; Maroharan, M.; Breiner, B. Lewis, F. D. J. Am. Chem. Soc. 2003, 125, 9329. d) Kless, A.; Nendel, M.; Willsey, S.; Houk. K. N. J. Am. Chem. Soc. 1999, 121, 4524.
43. A 1,5-hydrogen shift may occur with 2-alkyl-1-alkenylbenzene with a dearomatization process, see reference 31.
Chapter2
1. Carbonium ions, Vols. Olah, G. A.; I-V. Schleyer, P. v. R., (eds.). New York: Wiley-lnter-
science 1968.
2. a) Johnson, W. S. Bioorg. Chem. 1976, 5, 51. b) Brot, F. E.; Johnson, W. S.; Ratcliffe, B. E.; Stelling, G. A.; Bioorg. Chem. 1977, 6, 257.
3. Sorensen, T. S. Acc. Chem. Res. 1976, 9, 257.
4. Brouwer, D. M.; Oelderic, J. M.; Recl. T. Chim. Pays-Bas 1968, 87, 721.
5. a) Falbe, J.; Carbon monoxide in organic synthesis, Chapter 3. Berlin, Heidelberg, New York: Springer 1970. b) Hogeveen, H. Adv. Phys. Org. Chem. 1973, 10, 29.
6. Roberts, J. D.; Mazur, R. H. J. Am. Chem. Soc. 1951, 73, 3542.
7. a) Sargent, G. D. in: Carbonium ions, Vol. III. Olah, G. A.; Schreyer, P. v. R. (eds.). 1972, p. 1099 b) Brown, H. C.; Tetrahedron 1976, 32, 179. c) Olah, G. A. Acc. Chem. Res. 1976, 9, 41
8. Hart, H.; Kuzuya, M. J. Am. Chem. Soc. 1974, 96, 6436.
9. a) Hogeveen, H.; Kwant, P. W. Acc. Chem. Res. 1975, 8, 413. b) Giordano, C.; Heldeweg, R.; Hogeveen, H. J. Am. Chem. Soc. 1977 99, 5181.
10. Traynham, J. G. J. Chem. Educ., 1989, 66, 451.
11 Olah, G. A.; DeMember J. R.; Commeyras, A.; Bribes, J. L. J. Am. Chem. Soc. 1971, 93, 459.
12. Olah, G. A. Angew. Chem. Int. Ed. 1973, 12, 173.
13. Myhre, P. C.; Webb, G. G. J. Am. Chem. Soc. 1990, 112, 8991.
14. Wagner, G.; Bricker, W.; Ber. Dtsch. Chem. Res. 1899, 32, 2302.
15. Meerwein, H.; Emster, V. K.; Bet. Dtsch. Chem. Res. 1922, 58, 2500.
16. Bartlett, P. D. Non classical Ions, Benjamin, W. A. Menlo Park, Calif., 1965.
17.March, Jerry (1985), Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (3rd ed.), New York: Wiley, ISBN 0-471-85472-7.
18. a) Nickon A.; Weglein, R. C. J. Am. Chem. Soc. 1975, 97, 1271. b) Kocovsky, P.; Turecek, F.; Langer, V.; Podlahova J.; Podlaha, J. J. Org. Chem. 1986, 51, 4888
19. a) Corey, E. J.; Ursprung, J. J. J. Am. Chem. Soc.1956, 78, 5041. b) Shi, X.; Gorin, D. J.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 5802. c) Vasu D.; Das, A.; Liu, R.-S. Chem. Commun. 2010, 46, 4115-4117. d) Sato, T.; Onuma T.; Nakamura, I.; Masahiro, T. Org. Lett. 2011, 13, 4992.
20. a) Ye, L.; He, W.; Zhang, L. Angew. Chem., Int. Ed. 2011, 50, 3236. b) He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482. c) Ye, L.; He, W.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 8550. d) Ye, L.; Cui, L.; Zhang, G.; Zhang L. J. Am. Chem. Soc. 2010, 132, 3258. e) Lu, B.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 14070. f) Xiao, J.; Li, X. Angew. Chem., Int. Ed. 2011, 50, 7226.
21. Kawade R. K.; Liu, R.-S. Org. Lett. 2013, 15, 4094.
22. a). Starling, S. M.; Vonwiller, S. C.; Reek J. N. H.; J. Org. Chem. 1998, 63, 2262. b) Moews, P. C.; Knox, J. R.; Vaughan, W. R. J. Am. Chem. Soc. 1978, 100, 260. c) Cameron, T. S.; Jochem, K.; Morris, D. G.; Maguire, J. Acta Crystallogr. 1994, C50, 2085.
23. Brouwer, D. M.; Hogeveen, H. Recl. Trav. Chim. Pays-Bas 1970, 89, 211.
24. For the stereochemical aspect, see: Kallmerten, J. In Stereoselective Synthesis; Helmchen, G., Ed.; Thieme Verlag: Stuttgart, Germany, 1996; Vol. 6, pp 3810.
25. A [1,2] alkyl shift with net retention of configuration at the migrating terminus was reported for the skeletal rearrangement of a rigid bicyclic system. For example, see: Uyehara, T.; Yamada, J.; Kato, T. Tetrahedron Lett. 1985, 26, 5069.
26. For the [1,2] silyl shift to the cationic centers generated from sp3 carbon, see: a) Hudrlik, P. F.; Hudrlik, A. M.; Nagendrappa, G.; Yimenu, T.; Zellers,E.; Chin, E. J. Am. Chem. Soc. 1980, 102, 6896. b) Miura, K.; Hondo, T.; Saito, H.; Ito, H.; Hosomi, A. J. Org. Chem. 1997, 62, 8292. c) Ooi, T.; Kiba, T.; Maruoka, K. Chem. Lett. 1997, 519. d) Tanino, K.; Yoshitani, N.; Moriyama, F.; Kuwajima, I. J. Org. Chem. 1997, 62, 4206.
27. a) Wagner, G. J. Russ. Chem. Soc. 1899, 31, 690. b) Meerwein, H. Justus Liebigs Ann. Chem. 1914, 405, 129.
28. Reviews: a) Hanson, J. R. in Comprehensive Organic Synthesis, Vol. 3 (Eds.: Trost, B. M.; Fleming, I.; Pattenden G.), Pergamon, Oxford, 1991, chap. 3.1, pp. 705. b) Ricknorn, B. in Comprehensive Organic Synthesis, Vol. 3 (Eds.: Trost, B. M. Fleming, I.; Pattenden G.), Pergamon, Oxford, 1991, chap. 3.2, pp. 721.
29. Suginome and co-workers studied a 1,2-g-silyl shift activated by a g-silyl group; the syn and anti activations relied on the configurations of two silyl groups. In other words, there is no stereo specificity induced by the g-silyl group. This example is a typical Wagner–Meerwein rearrangement, because both diastereomeric carbocations show the same 1,2-silyl shift; a) Suginome, M.; Takama, A.; Ito, Y. J. Am. Chem. Soc. 1998, 120, 1930. b) Starling, S. M. S.; Vonwiller, C.; Reek, J. N. H. J. Org. Chem. 1998, 63, 2262.
30. For selected example, see: e) Hashmi, A. S. K.; Yang, W.; Rominger, F. Angew. Chem. Int. Ed. 2011, 50, 5762. f) Hashmi, A. S. K. Yang, W.; Rominger, F. Adv Synth. Catal. 2012, 354, 1273. g) Hashmi, A. S. K.; Yang, W.; Rominger, F. Chem. Eur. J. 2012, 18, 6576.
31. Uyehara, T.; Yamada, J.; Kato, T. Tetrahedron Lett. 1985, 26, 5069.
32. Reviews on 1,2-alkyl migration catalyzed by gold catalysts: a) Crone, B. S.; Kirsch, F. Chem. Eur. J. 2008, 14, 3514. b) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2010, 49, 5232. c) Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Aldrichimica Acta 2010, 43, 37.
33. For gold-catalyzed oxidative cyclization of 1,5-enyne, see Vasu, D.; Hung, H.-H.; Bhunia, S. Gawade, S. A.; Das, A.; Liu, R.-S. Angew. Chem. Int. Ed. 2011, 50, 6911. The reported reactions herein are unrelated to Wagner–Meerwein rearrangements.
34. For gold-catalyzed reactions on 1,4-enynes, see selected examples: a) Shi, X.; Gorin, D. J.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 5802. b) Vasu, D.; Das, A.; Liu, R.-S. Chem. Commun. 2010, 46, 4115. c) Marion, N.; Diez-Gonzalez, S.; Fremont, P.; Noble, A. R.; Nolan, S. P. Angew. Chem. Int. Ed. 2006, 45, 3647. d) Haung, T. T.; Harschneck, T.; Duschek, A.; Lee, C.-U.; Binder, J. T.; Menz, H.; Kirsch, S. F. J. Organomet. Chem. 2009, 694, 510.
35. Generation of α-carbonyl gold carbenoids through the oxidation of alkynes with pyridine-based oxides selected examples: a) Xiao, J.; Li, X.; Angew. Chem. Int. Ed. 2011, 50, 7226. b) Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258. c) Ye, L.; He, W.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 8550. d) Ye, L.; He, W.; Zhang, L. Angew. Chem. Int. Ed. 2011, 50, 3236. e) He, W.; Li, C.; L. Zhang, J. Am. Chem. Soc. 2011, 133, 8482. f) Mukherjee, A.; Dateer, R. B.; Chaudhari, R.; Bhunia, S.; Karad, S. N.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 15372. g) Davies, P.W.; Cremonesi, A.; Martin, N. Chem.Commun. 2011, 47, 379. h) Noey, E. L.; Luo, Y.; Zhang, L.; Houk, K. N. J. Am. Chem. Soc. 2012, 134, 1078.
36. For related AuI- and AgI-catalyzed alkene/carbene couplings, see a) Lin, G.-Y.; Li, C.-W.; Hung, S.-H.; Liu, R.-S. Org. Lett. 2008, 10, 5059. b) Hashmi, A. S. K.; Burhle, M.; Salathe, R.; Bats, J. W. Adv. Synth. Catal. 2008, 350, 2059. Notably, there is no stereospecificity of a migration reported herein.
37. This bisected conformation allows an efficient interaction of cyclopropyl σ bonding electrons with their adjacent empty p orbital. See reviews: a) Olah, G. A.; Reddy, V.; Prakash, G. K. S.; Chemistry of the Cyclopropyl Group, Part 2 (Eds.: Z. Rappoport), Wiley, Chichester, UK, 1995, pp. 813. b) Olah, G. A.; Reddy, V.; Prakash, G. K. S. Chem. Rev. 1992, 92, 69.
38. Cyclopropyl alkynes were often used in gold-catalyzed reactions because of their higher reactivity compared to normal alkynes. See: a) Furstner, A.; Aissa, C. J. Am. Chem. Soc. 2006, 128, 6306. b) Shi, M.; Liu, L.-P.; Tang, J. J. Am. Chem. Soc. 2006, 128, 7430. c) Li, C.-W.; Pati, K.; Lin, G.-Y.; Abu Sohel, S. M.; Hung, H.-H.; Liu, R.-S. Angew. Chem. Int. Ed. 2010, 49, 9891. d) Liao, H. H.; Liu, R.-S. Chem. Commun. 2011, 47, 1339. e) Yang, C.-Y.; Lin, M.-S.; Liao, H.-H.; Liu, R.-S. Chem. Eur. J. 2010, 16, 2696. f) Gorin, D. J.; Watson, D. G.; Toste, F. D. J. Am. Chem. Soc. 2008, 130, 3736. g) Ye, S.; Yu, Z.-X. Org. Lett. 2010, 12, 804.
39. CCDC 916773 (2d) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
40. All computations were done using the Gaussian 03 package: M. J. Frisch, et al. Gaussian03, revision C. 02: Gaussian, Inc., Pittsburgh, PA, 2003.
41. The B3LYP method, see: a) Becke, A. D. Phys. Rev. A 1988, 38, 3098. b) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. d) The B97D method. see: Grimme, S. J. Comput. Chem. 2006, 27, 1787. e) The LANL2DZ basis sets, see: Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270.
42. The Onsager model, see: a) Wong, M.W.; Frisch, M. J.; Wbierg, K. B. J. Am. Chem. Soc. 1991, 113, 4776. b) Kirkwood, J. G. J. Chem. Phys. 1934, 2, 351. c) Onsager, L. J. Am. Chem. Soc. 1936, 58, 1486.
43. The PCM method, see: a) Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117. b) Cossi, M.; Barone, V.; Canni, R.; Tomasi, J. Chem. Phys. Lett. 1996, 255, 327. c) V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995.
Chapter3
1. Hudlicky, T.; Natchus, M. G. In Organic Synthesis: Theory and Applications; Hudlicky, T.; Ed.; JAI: Greenwich, CT, 1993; Vol. 2, pp 1–23.
2. Carruthers, W. Cycloaddition Reactions in Organic Synthesis; Pergamon: Oxford, 1990.
3. Kobayashi, S.; Jorgensen, K. A. Cycloaddition Reactions in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2002.
4. Lautens, M.; Klute, W.; Tam W. Chem. Rev. 1996, 96, 49.
5. a) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. b) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. c) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. d) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431. e) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208. f) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994. g) Corma, A.; Leyva-Pérez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657. h) For a previous review, covering some gold-catalyzed cyclo- additions up to 2008. Shen, H. C. Tetrahedron 2008, 64, 7847.
6. a) Brown, T. J.; Sugie A.; Dickens, M. G.; Widenhoefer, R. A. Organometallics 2010, 29, 4207. b) Brown, T. J.; Dickens, M. G.; Widenhoefer, R. A. J. Am. Chem. Soc. 2009, 131, 6350. c) Brown, T. J.; Dickens, M. G.; Widenhoefer, R. A. Chem. Commun. 2009, 6451. d) Brooner, R. E. M.; Widenhoefer, R. A. Organometallics 2011, 30, 3182. e) Shapiro, N. D.; Toste, F. D. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 2779.
7. Fru¨hauf, H.-W. Chem. Rev. 1997, 97, 523.
8. Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395.
9. Fürstner, A.; Davies, P. W. Angew. Chem. Int. Ed. 2007, 46, 3410.
10. Padwa, A. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A. Ed.; John Wiley & Sons: New York, 1984; Vol. 2, p 277.
11. Harwood, L. M.; Vickers, R. J. In Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products; Padwa, A.; Pearson, W. H. Eds.; John Wiley & Sons: New York, 2002; p 169.
12. Gothelf, K. V. In Cycloaddition Reactions in Organic Synthesis; a) Kobayashi, S.; Jørgensen, K. A. Eds.; Wiley-VCH: Weinheim, 2002; Chapter 6, p 211. b) Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863.
13. Karlsson, S.; Ho¨gberg, H. E. Org. Prep. Proceed. Int. 2001, 33, 103.
14. Najera, C.; Sansano, J. M. Curr. Org. Chem. 2003, 7, 1105.
15. a) Kanemasa, S.; Tsuge, O. In Advances in Cycloaddition; Curran, D. P. Ed.; JAI Press: Greenwich, CT, 1993; Vol. 3, p 99. b) Grigg, R.; Sridharan, V. In Advances in Cycloaddition; Curran, D. P. Ed.; JAI Press: Greenwich, CT, 1993; Vol. 3, p 161. c) Padwa, A. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I. Eds.; Pergamon: Oxford, U.K., 1991; Vol. 4, p 1069. d) Wade, P. A. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I. Eds.; Pergamon: Oxford, U.K., 1991; Vol. 4, p 1111. e) Pearson, W. H.; Stoy, P. Synlett, 2003, 903.
16. a) Obst, U.; Betschmann, P.; Lerner, C.; Seiler, P.; Diederich, F. Helv. Chim. Acta 2000, 83, 855. b) Alvarez-Ibarra, C.; Casaky, A. G.; Lu¨pez, I.; Quiroga, M. L. J. Org. Chem. 1997, 62, 479. c) Waid, P. P.; Flynn, G. A.; Huber, E. W.; Sabol, J. S. Tetrahedron Lett. 1996, 37, 4091. d) Bianco, A.; Maggini, M.; Scorrano, G.; Toniolo, C.; Marconi, G.; Villani, C.; Prato, M. J. Am. Chem. Soc. 1996, 118, 4072. e) Kolodziej, S. A.; Nikiforovich, G. V.; Skeean, R.; Lignon, M. F.; Martinez, J.; Marshall, G. R. J. Med. Chem. 1995, 38, 137. f) Pearson, W. H. In Studies in Natural Product Chemistry; Rahman, A. U. Ed.; Elsevier: New York, 1998; Vol. 1, p 323. g) Sebahar, P. R.; Williams, R. M. J. Am. Chem. Soc. 2000, 122, 5666. h) Denhart, D. J.; Griffith, D. A.; Heathcock, C. H. J. Org. Chem. 1998, 63, 9616. i) Overman, L. E.; Tellew, J. E. J. Org. Chem. 1996, 61, 8338. j) Sisko, J.; Henry, J. R.; Weinreb, S. M. J. Org. Chem. 1993, 58, 4945.
17. Huisgen, R. Angew. Chem., Int. Ed., 1963, 2, 565.
18. Huisgen, R. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A. Ed.; Wiley: New York, 1984; Vol. 1, p 1.
19. Fukui, K. Acc. Chem. Res. 1971, 4, 57.
20. Sustmann, R. Tetrahedron Lett. 1971, 2717.
21. Houk, K. N.; Sims, J.; Duke, R. E.; Strozier, R. W.; George, J. K. J. Am. Chem. Soc. 1973, 95, 7287.
22. For selected reviews, see: a) Luo, Y.; Ji, K.; Li, Y.; Zhang, L. J. Am. Chem. Soc. 2012, 134, 17412. b) Fürstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410. c) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. d) Arcadi, A. Chem. Rev. 2008, 108, 3266. e) Jimenez-Nunez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. f) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239. g) Abu Sohel, S. M.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269. h) Wang, S.; Zhang, G.; Zhang, L. Synlett, 2010, 692.
23. Seidel, G.; Mynott, R.; Fürstner, A. Angew. Chem., Int. Ed. 2009, 48, 2510.
24. A similar strategy of ylide trapping has been used to monitor the dynamics of methylene. (a) Jackson, J. E.; Soundararajan, N.; Platz, M. S.; Liu, M. T. H. J. Am. Chem. Soc. 1988, 110, 5595. b) Turro, N. J.; Cha, Y.; Gould, I. R. J. Am. Chem. Soc. 1987, 109, 2101. c) Turro, N. J.; Cha, Y.; Gould, I. R.; Padwa, A.; Gasdaska, J. R.; Tomas, M. J. Org. Chem. 1985, 50, 4417.
25. Kusama, H.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2002, 124,11592.
26. Kusama, H.; Miyashita, Y.; Takaya, J.; Iwasawa, N. Org. Lett. 2006, 8, 289.
27. a) Tsuge O.; Kanemasa S.; Takenaka S. J. Org. Chem. 1986, 51, 1853. b) Tsuge, O.; Kanemasa, S.; Takenaka, S. Heterocycles 1983, 20, 1907.
28. Tsuge, O.; Kanemasa, S.; Takenaka, S.; Kuraoka, S. Chem. Lett., 1984, 465.
29. Tsuge, O.; Kanemasa, S.; Kuraoka, S.; Takenaka, S. Chem. Lett. 1984, 281.
30. a) Maiti, D. K.; Chatterjee, N.; Pandit P.; Hota S. K. Chem. Commun. 2010, 46, 2022. b) Guo, L.-J.; Wei, C.-X.; Jia, J.-H.; Zhao, L.-M.; Quan, Z.-S. Eur. J. Med. Chem., 2009, 44, 954.
31. a) Georgescu, E.; Draghici, C.; Iuhas, P. C.; Georgescu, F. ARKIVOC 2005 (x) 95. b) Padwa, A.; Austin, D. J.; Precedo, L.; Zhi, L. J. Org. Chem. 1993, 58, 1144.
32. Review: Xiao, J.; Li, X. Angew. Chem. Int. Ed. 2011, 50, 7226.
33. For other pyridine N-oxides, see selected examples: a) Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258. b) Ye, L.; He, W.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 8550. c) Ye, L.; He, W.; Zhang, L. Angew. Chem. Int. Ed. 2011, 50, 3236.
34. See selected examples: a) Liu, B.; Li, C.; Zhang, L.; J. Am. Chem. Soc. 2010, 132, 14070. b) He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482. c) Luo, Y.; Ji, K.; Li, Y.; Zhang, L. J. Am. Chem. Soc. 2012, 134, 17412. d) Ghorpade, S.; Su, M.-D.; Liu, R.-S. Angew. Chem. Int. Ed. 2013, 52, 4229. e) Bhunia, S.; Ghorpade, S.; Huple, D. B.; Liu, R.-S. Angew. Chem. Int. Ed. 2012, 51, 2939. f) Vasu, D.; Hung, H.-H.; Bhunia, S.; Gawade, S. A.; Das, A.; Liu, R.-S. Angew. Chem. Int. Ed. 2011, 50, 6911. g) Dateer, R. B.; Pati, K.; Liu, R.-S. Chem. Commun. 2012, 48, 7200. h) Fu, J.; Shang, H.; Wang, Z.; Chang, L.; Shao, W.; Yang, Z.; Tang, Y. Angew. Chem. Int. Ed. 2013, 52, 4198. i) Henrion, G.; Chavas, T.E. J.; Goff, X. L.; Gagosz, f. Angew. Chem. Int. Ed. 2013, 52, 6277. j) Pawar, S. K.; Wang, C.-D.; Bhunia, S.; Jadhav, A. M.; Liu, R.-S. Angew, Chem. Int. Ed. 2013, 52, 7559.
35. a) Doyle, M. P.; McKervy, M. A.; Ye, T. Modern Catalytic Method for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides; Wiley; New York, 1998. b) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. c) Shapiro, N. D.; Toste, F. D. Synlett, 2010, 675.
36. a) Barluenga, J.; Lonzi, G.; Riesgo, L.; López, L. A.; Tomás, M. J. Am. Chem. Soc. 2010, 132, 13200;
37. Reviews for gold-catalyzed cycloaddition reactions, see: a) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. b) López, F.; Mascareñas, J. L. Beilstein, J. Org. Chem. 2011, 7, 1075. c) Aubert, C.; Fensterbank, L.; Garcia, P.; Malacria, M.; Simonneau, A. Chem Rev. 2011, 111, 1954. d) Garayalde, D.; Nevado, C. ACS. Catal. 2012, 2, 1462.
38. a) Flitsch, W. In Comprehensive Heterocyclic Chemistry II; Katrizky, A. R.; Rees, C. W.; Scriven, E. F. V. Eds.; Pergamon Press: Oxford, U.K. 1996, Vol. 8; (review). b) Micheal, J. P. Alkaloids, 2001, 55, 91. c) Shipman, M. Sci. Synth., 2001, 10, 745. d) Micheal, J. P. Nat. Prod. Rep. 2002, 19, 742. (e) Mweetwa, A. M.; Hunter, D.; Poe, R.; Harich, K. C.; Ginzberg, I.; Veilleux, R. E.; Tokuhisa, J. G. Phytochemistry, 2012, 75, 32. f) Heretsch, P.; Tzagkaroulaki, L.; Giannis, A. Angew. Chem. Int. Ed. 2010, 49, 3418. g) Pelletier, S. W.; Jacobs, W. A. J. Am. Chem. Soc., 1953, 75(18), 4442. h) Zimowaski, J. ARKIVOC, 2004, 24. i) Gunic, E.; Tabakovic, I. J. Org. Chem. 1994, 59, 1264. j) Schreiber, K.; Ronsch, H. Tetrahedron Lett, 1965, 21, 645. k) Rangarajan, A.; Miller, R. A. J. Amer. Soc. Hort. Sci. 2000, 125(6): 689. l) Torres, M. C. M.; Pinto, F. C. L.; Braz-Filho, R.; Silveira, E. R.; Pessoa, O. D. L.; Jorge, R. J. B.; Ximenes, R. M.; Monteiro, H. S. A.; Evangelista, J. S. A. M.; Diz-Filho, E. B. S.; Toyama, M. H. J. Nat. Prod., 2011, 74 (10), 2168.
39. For the generation of 2-oxomethylpyridinium ylides with bases, see ref [40] and a) Morra, N. A.; Morales, C. L.; Bajitos, B.; Wang, X.; Jang, H.; Wang, J.; Yu, M.; Pagenkopf, B. L. Adv. Synth. Catal. 2006, 348, 2385. b) Basavaih, D.; Dvendar, B.; Lenin, D. V.; Satyanarayana, T. Synlett 2009, 411. c) Viswambharan, B.; Selvakumar, K.; Madhavan, S.; Shanmugam, P. Org. Lett. 2010, 12, 2108.
40. Dipolar [3+2]-cycloadditions of α-carbonyl pyridinium ylides with electron deficient alkenes were performed only stoichiometrically, and some ylides showed high stereoselectivity.[40] See: a) Sliwa, W. Heterocycles 1986, 24, 181. b) Katritzky, A. R.; Grzeskowiak, N. E.; Alvarez-Builla, J. J. Chem. Soc. Perkin Trans, I, 1981, 1180. c) Tsuge, O.; Kanesawa, S.; Takenaka, S. J. Org. Chem. 1986, 51. 1853. d) Goff, D. A. Tetrahedron Lett 1999, 40, 8741. e) Tsuge, O.; Kanemasa, S.; Takenaka, S.; Kuraoka, S. Chem. Lett. 1984, 465.
41.α-Carbonyl pyridinium ylides were detectable upon the photolysis of diazo carbonyl species and pyridine, see: a) Jackson, J. E.; Soundararajan, N.; Platz, M. S.; Liu, M. T. H. J. Am. Chem. Soc. 1988, 110, 5595. b) Toscano, J. P.; Platz, M. S.; Nikolaev, V.; Popik, V. V. J. Am. Chem. Soc. 1994, 116, 8146. c) Toscano, J. P.; Platz, M. S. J. Am. Chem. Soc. 1995, 117, 4712.
42. a) Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry toward Heterocyclic and Natural Products; Padwa, A.; Pearson, W. H. Eds. John Wiley and Sons; Hoboken, NJ, 2003. b) Najera, C.; Sansano, J. M. Curr. Org. Chem. 2003, 7, 1105. c) Kanemasa, S. Synlett 2002, 1371. d) Gothelf, K. V. In Cycloaddition reactions in Organic Synthesis; Kobayashi, S.; Jøgensen, K. A. Eds.; Wiley-VCH; Weinheim, Germany, 2002, pp 215.
43. We employed chiral LAu2Cl2/AgNTf2 (5/10 mol%, L= (R)-DTBM-MeO-Biphep) to perform the following cycloaddition in DCE (28 0C, 36 h), giving a mixture of desired 3-5a and cyclopropyl indanone (+)-3-6a in 62% and 18% respectively. Notably, no asymmetric induction was obtained for compound 3-5a, whereas cyclopropyl indanone (+)-3-6a was obtained with 17% ee.
Chapter4
1. Textbooks: a) Backvall, J. E.; Normant, J. F.; Overman, L. E.; Knochel, P.; Sonogashira, K.; de Meijere, A.; Suzuki, A.; Mitchel, T. N.; Tsuji, J.; Negishi, E. Metal-Catalyzed Cross-Coupling Reactions, Vol. 1 – 2 (Eds.: A. de Meijere, F. Diederich), Wiley-Interscience, Weinheim, 1998. b) Handbook of Organopalladium Chemistry for Organic Synthesis, Vol. 1 and 2 (Eds.: Negishi, E.; de Meijere, A.; _ckvall, J. E. B; Cacchi, S.; Hayashi, T.; Itoh, Y.; Kosugi, M.; Murahashi, S. I.; Oshima, K.; Yamamoto Y.), Wiley-Interscience, New York, 2002; reviews: c) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2010, 1, 13. d) Magano, J.; Dunetz, J. R. Chem. Rev. 2011, 111, 2177. e) Vasilevich, I.; Kombarov, R. V.; Genis, D. V.; Kirpichenok, M. A. J. Med. Chem. 2012, 55, 7003. f) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem. Int. Ed. 2012, 51, 5062.
2. For representative reviews, see: a) Himes, R. A.; Karlin, K. D. Curr. Opin. Chem. Biol. 2009, 13, 119. b) Que, L.; Tolman, W. B. Nature, 2008, 455, 333. c) Chufan, E. E.; Puiu, S. C.; Karlin, K. D. Acc. Chem. Res. 2007, 40, 563. d) Rosenzweig, A. C.; Sazinsky, M. H. Curr. Opin. Struct. Biol. 2006, 16, 729. e) Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev. 2004, 104, 1013. f) Lewis, E. A.; Tolman, W. B. Chem. Rev., 2004, 104, 1047. g) Solomon, E. I.; Chen, P.; Metz, M.; Lee, S. K.; Palmer, A. E. Angew. Chem. Int. Ed. 2001, 40, 4570. h) Mahadevan, V.; Gebbink, R. J. M. K.; Stack, T. D. P. Curr. Opin. Chem. Biol. 2000, 4, 228. i) Klinman, J. P. Chem. Rev. 1996, 96, 2541. j) Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E. Chem. Rev. 1996, 96, 2563.
3. Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem. Int. Ed. 2011, 50, 11062.
4. Monnier F.; Taillefer, M. Angew. Chem., Int. Ed., 2009, 48, 6954.
5. Gamez, P.; Aubel, P. G.; Driessen W. L.; Reedijk, J. Chem. Soc. Rev., 2001, 30, 376.
6. Schmittel M.; Burghart, A. Angew. Chem., Int. Ed., 1997, 36, 2550.
7. Klussmann, M.; Sureshkumar, D. Synthesis 2011, 353.
8. a) Scheuermann, C. J. Chem. Asian J. 2010, 5, 436. b) Yoo, W.-J.; Top. C.-J. Li, Curr. Chem. 2010, 292, 281.
9. Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
10. Please see, for example: a) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2004, 126, 11810. b) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 6968. c) Yang, F.; Li, J.; Xie, J.; Huang, Z.-Z. Org. Lett. 2010, 12, 5214. d) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 3672. e) Li, Z.; Li, C.-J. Org. Lett. 2004, 6, 4997. f) Basla, O.; Li, C.-J. Org. Lett. 2008, 10, 3661. g) Li, Z.; Li, C.-J. Eur. J. Org. Chem. 2005, 3173. h) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2006, 128, 56.
11. Xie, J.; Huang, Z.-Z. Angew. Chem. Int. Ed. 2010, 49, 10181.
12. Kharaschan, M. S.; Fono, A. J. Org. Chem. 1959, 24, 72.
13. Boess, E.; Schmits, C.; Klussmann, M. J. Am. Chem. Soc. 2012, 134, 5317.
14. Boess, E.; Sureshkumar, D.; Sud, A.; Wirtz, C.; Farès, C.; Klussmann, M. J. Am. Chem. Soc. 2011, 133, 8106. b) Xia, W.; Zhao, G.; Yang, C.; Guo, L.; Sun, H.; Chen, C. Chem. Commun. 2012, 48, 2337.
15. Boga, C.; Fiorelli, C.; Savoia, D. Synthesis 2006, 2, 285.
16. Blazis, V. J.; Koeller, K. J.; Spilling, C. D. J. Org. Chem. 1995, 60, 931. b) Grilli, S.; Martelli, G.; Savoia, D.; Zazzetta, C. Adv. Synth. Catal. 2002, 344, 1068.
17. Benjamin, C. G.; Alexanian, E. J. Org. Lett. 2014, 16, 4304.
18. Li, X.; Yang, J.; Kozlowski, M. C. Org. Lett. 2001, 3, 1137.
19. a) Li, X.; Hewgley, J. B.; Mulrooney, C. A.; Yang, J.; Kozlowski, M. C. J. Org. Chem. 2003, 68, 5500. For more detailed mechanistic studies see: b) Roithova, J.; Schrcder, D. Chem. Eur. J. 2008, 14, 2180. c) Roithova, J.; Milko, P. J. Am. Chem. Soc. 2010, 132, 281.
20. For Selected reviews: a) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem. 2014, 126, 76. Angew. Chem. Int. Ed. 2014, 53, 74. b) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem. Int. Ed. 2011, 50, 11062. c) Klussmann, M.; Sureshkumar, D. Synthesis 2011, 353. d) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780. e) Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464.
21. Selected examples: a) Boess, E.; Schmits, C.; Klussmann, M. J. Am. Chem. Soc. 2012, 134, 5317. b) Zhang, J.; Tiwari, B.; Xing, C.; Chen, X.; Chi, Y. R. Angew. Chem. Int. Ed. 2012, 51, 3649. c) Ghobrial, M.; Schürch, M.; Mihovilovic, M. D. J. Org. Chem. 2011, 76, 8781. d) Xie, J.; Huang, Z.-Z.; Angew. Chem. Int. Ed. 2010, 49, 10181. e) Yang, F.; Li, J.; Xie, J.; Huang, Z.-Z. Org. Lett. 2010, 12, 5214. f) Zhao, L.; Li, C.-J. Angew. Chem. Int. Ed. 2008, 47, 7075. g) Boess, E.; Sureshkumar, D.; Sud, A.; Wirtz, C.; Farès, C.; Klussmann, M. J. Am. Chem. Soc. 2011, 133, 8106. h) Baslé, O.; Li C.-J. Green Chem. 2007, 9, 1047. i) Shen, Y.; Li, M.; Wang, S.; Zhan, T.; Tan, Z.; Guo, C.-C. Chem. Commun. 2009, 953. j) Baslé, O.; Li, C.-J. Chem. Commun. 2009, 4124. k) Tian, J.-S.; Loh, T.-P. Angew. Chem. Int. Ed. 2010, 49, 8417.
22. a) Han, W.; Ofial, A. R. Chem. Commun. 2009, 5024. (b) Liu, P.; Zhou, C.-Y.; Xiang, S.; Che, C.-M. Chem. Commun. 2010, 46, 2739. c) Kumaraswamy, G.; Murthy, A. N.; Pitchaiah, A. J. Org. Chem. 2010, 75, 3916. d) Shirakawa, E.; Uchiyama, N.; Hayashi, T. J. Org. Chem. 2011, 76, 25. e) Ghobrial, M.; Harhammer, K. M.; Mihovilovic, D.; Schnürch, M. Chem. Commun. 2010, 46, 8836. f) Volla, C. M. R.; Vogel, P. Org. Lett. 2009, 11, 1701. g) Ratnikov, M. O.; Xu, X.; Doyle, M. P. J. Am. Chem. Soc. 2013, 135, 9475.
23. a) Wang, M.-Z.; Zhou, C.-Y.; Wong, M.-K.; Che, C.-M. Chem.-Eur. J. 2010, 16, 5723. b) S.-I. Murahashi, T. Naota, K. Yonemura, J. Am. Chem. Soc. 1988, 110, 8256. c) Murahashi, S.-I.; Naota, T.; Kuwabara, T.; Saito, T.; Kumobayashi, H.; Akutagawa, S. J. Am. Chem. Soc. 1990, 112, 7820. d) Murahashi, S.-I.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem. Soc. 2003, 125, 15312. e) Murahashi, S.-I.; Saito, T.; Naota, T.; Kumobayashi, H.; Akutagawa, S. Tetrahedron Lett. 1991, 32, 5991. f) Murahashi, S.-I.; Nakae, T.; Terai, H.; Komiya, N. J. Am. Chem. Soc. 2008, 130, 11005. g) Yu, A.; Gu, Z.; Chen, D.; He, W.; Tan, P.; Xiang, J. Catal. Commun. 2009, 11, 162.
24. a) Catino, A. J.; Nichols, J. M.; Nettles, B. J.; Doyle, M. P. J. Am. Chem. Soc. 2006, 128, 5648. b) Ratnikov, M. O.; Doyle, M. P. J. Am. Chem. Soc. 2013, 135, 1549. c) Alagiri, K.; Prabhu, K. R. Org. Biomol. Chem. 2012, 10, 835.
25. a) Sud, A.; Sureshkumar, D.; M. Klussmann, Chem. Commun. 2009, 3169. b) Singhal, S.; Jain, S. L.; Sain, B. Chem. Commun. 2009, 2371.
26. a) Casiraghi, G.; Battistini, L.; Curti, C.; Rassu, G.; Zanardi, F. Chem. Rev, 2011, 111, 3076 b) Toure, B. B.; Hall, D. G. Chem. Rev. 2009, 109, 4439.
27. Ottenheijm, H. C. J.; Herscheid, J. D. M. Chem. Rev. 1986, 86, 697.
28. For Cu-catalyzed aerobic oxidations of N-hydroxyamines to nitrone species, see: a) Gribble, G. W.; Barden, T. C. J. Org. Chem. 1985, 50, 5900. b) Sakurai, T.; Uematsu, Y. Tanaka, O.; Inoue, H. J. Chem. Soc. Perkin Trans. 2, 1992, 2163. c) Kawade, R. K.; Tseng, C. C. Liu, R.-S. Chem.-Eur. J. 2014, in press.
29. a) Schmidt, V. A.; Alexanian, E. J. J. Am. Chem. Soc. 2011, 133, 11402. b) Giglio, B. C.; Schmidt, V. A.; Alexanian, E. J. J. Am. Chem. Soc. 2011, 133, 13320. c) Schmidt, V. A.; Alexanian, E. J. Angew. Chem. Int. Ed. 2010, 49, 4491. d) Berti, C.; Grierson, L. Grimes, J. A.-M.; Perkins, M. J.; Terem, B. Angew. Chem. Int. Ed. 1990, 29, 653. e) Schmidt, V. A.; Alexanian, E. J. Chem. Sci. 2012, 3, 1672. f) Quinn, R. K.; Schmidt, V. A.; Alexanian, E. J. Chem. Sci. 2013, 4, 4030.
30. For the stereoselective synthesis of the epimers of 1,4-dihydroxy-2,3-diaminocyclohexanes 7, see: Boga, C.; Fiorelli, C.; Savoia, D. Synthesis 2006, 2, 285.
31. Trapero, A.; Llebaria, A. ACS Med. Chem. Lett. 2011, 2, 614.
32. Arcelli, A.; Cere, V.; Peri, F.; Pollicino, S. Riccib, A. Tetrahedron Asymmetry. 2002, 13, 191.
33. Hanessian, S.; Wang, J. Can. J. Chem. 1993, 71, 2102.
34. Magano J. Tetrahedron. 2011, 67, 7875.
35. Crystallographic data of compounds 6a (CCDC 1013973) and 7b (CCDC 1013974) were deposited at Cambridge crystallographic data center.
36. a) Stockman, R. A.; Sinclair, A.; Arini, L. G.; Szeto, P.; Hughes D. L. J. Org. Chem. 2004, 69, 1598. b) Ji, C.; Miller, M. J. Tetrahedron Lett. 2010, 51, 3789. c) Sasaki, T.; Eguchi, S.; Suzuki, T. J. Org. Chem. 1982, 47, 5250.
37. Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 738.