簡易檢索 / 詳目顯示

研究生: 蕭任偉
Jen-Wei Hsiao
論文名稱: 薄膜電晶體光漏電研究及新穎微晶矽薄膜電晶體之開發
The Study of TFT Photo Leakage Current and the Development of Novel uc-Si TFT
指導教授: 葉鳳生
Fon-Shan Yeh
張鼎張
Ting-Chang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 65
中文關鍵詞: 光漏電微晶矽銅鎂合金
外文關鍵詞: photo leakage current, microcrystalline silicon, CuMg alloy
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 薄膜電晶體為液晶顯示器(LCD)畫素驅動之關鍵元件。當面板朝著大尺寸高畫質發展時,提升薄膜電晶體開關特性的技術將是必要之趨勢,尤其在光致漏電方面,更是迫切需要解決的課題。在本論文中,我們利用幾種方式來達成低光漏電的薄膜電晶體。我們首先提出一個方法來降低薄膜電晶體的光漏電。我們選擇一種在矽半導體材料中具有深層缺陷能態(deep traps)特性的元素—銅,來當作傳導載子的復合中心(recombination center)。將薄膜電晶體浸泡在氯化銅溶液中,使銅擴散進通道層後,研究的結果顯示光漏電流的值比浸泡前降低。其次,因微晶矽薄膜具有較低之光吸收係數,我們利用傳統電漿輔助化學汽相沉積系統直接沉積微晶矽做為薄膜電晶體主動層,成功製作低於非晶矽薄膜電晶體之光漏電流的微晶矽薄膜電晶體。除此之外,我們亦藉由遲滯(hysteresis)量測來研究薄膜電晶體經紫外光處理前後的光漏電特性,得出薄膜電晶體經背照紫外光所產生的缺陷,對電晶體導通特性無太大影響,且可減緩照光下電洞累積形成通道的速率,較適合用來抑制光漏電。
    另外,為了要提升薄膜電晶體之導通電流,我們沉積微晶矽薄膜為主動層,並搭配銅鎂合金(CuMg alloy)做為薄膜電晶體之源/汲極,提出一種新的製程技術,利用退火製程使銅鎂合金中的鎂向外擴散在合金與微晶矽之介面形成歐姆接觸層,取代傳統以摻雜非晶矽之歐姆接觸層。我們成功地製作出此新穎的微晶矽薄膜電晶體,相較於傳統以摻雜非晶矽之歐姆接觸層之薄膜電晶體製程,我們提出的製程並不需沉積摻雜非晶矽,因此也不用做背通道蝕刻的步驟,因此具有較簡化的製程,適合應用於量產上。


    Thin film transistors are employed as the pixel-driving elements of liquid crystal displays (LCDs). As the development of LCD toward large size and high quality panels, to enhance the TFT switching characteristic is necessary. Particularly, the large photo-induce leakage current is an issue that need to be solved imminently. In this thesis, we use several ways to realize a low photo leakage current TFT. First, we introduce a deep level trap center, copper, into Si film to act as recombination centers. The a-Si TFT was dipped in CuCl2 solution to let copper diffuse into bulk channel layer. The experimental results have shown the photo leakage current of a-Si TFT after dipping is lowered. Second, because the lower absorption coefficient of uc-Si, we utilize the conventional PECVD to direct deposit uc-Si as TFT active layer. We have successfully fabricated the uc-Si TFT which have photo leakage current lower than conventional a-Si TFT with island-out structure. In addition, we also study the photo leakage current of a-Si TFT before and after UV treatment by hysteresis measurement. We concluded that trap states created by back UV treatment was suitable for suppress TFT photo leakage current, since the on-state of TFT was not affected by back UV treatment, and the hole accumulation rate was lowered after back UV treatment.
    Besides, in order to increase the on-state current of TFT, we deposited the uc-Si film as TFT active layer and the CuMg alloy was used as source/drain metal. We proposed a novel fabrication process by annealing to let Mg out-diffuse from CuMg alloy to the interface between CuMg alloy and uc-Si to form Ohmic contact layer, replaced the conventional n+ doped a-Si as Ohmic contact layer. We have successfully fabricated this novel uc-Si TFT. Compared with conventional TFT which use n+ doped a-Si as Ohmic contact layer, there is no n+ layer deposition in our process. Hence, there would be no back channel etching process. Therefore, this simpler process is suitable for mass production.

    Table of Contents Chinese Abstract……………………………………….……………..I English Abstract……………………………………….…………….III Acknowledgement...............................................................................V Table of Contents...……………….…...……………….…………..VII Table Captions………………………………………....………….....IX Figure Captions……………………………………………................X Chapter 1 - Introduction 1.1 Introduction……………………………………………………….....1 1.1.1 General Background…………..………...……………..………1 1.1.2 AMLCD Operations………………………………..….………3 1.1.3 Photo leakage current mechanism……………………..………5 1.2 Motivation…...…………….…………...............................................7 1.3 Thesis outline………………………………….…...…......………...10 Chapter 2 - Experimental Procedures and Measurement 2.1 Fabrication process of conventional BCE structure a-Si TFT……...11 2.1.1 a-Si TFT Dipped in CuCl2 solution...………………………...13 2.1.2 The hysteresis measurement of a-Si TFT...…………………..14 2.2 Fabrication process of conventional BCE structure uc-Si TFT…….15 2.3 Fabrication process of novel TFT with new ohmic contact layer…...17 2.4 Measurement of electrical characteristic…………………………...20 Chapter 3 - Results and Discussion 3.1 Effects of Copper Diffusion for a-Si TFT……………………….…21 3.1.1 Photo leakage current study after dipping in CuCl2 solution...22 3.2 The hysteresis analysis of a-Si TFT………………………….…….24 3.2.1 Photo leakage current analysis of TFT with UV treatment by hysteresis measurement….………………………….……..26 3.3 uc-Si TFT with low photo leakage current………………….……...29 3.4 Novel TFT with new ohmic contact layer…………………….…….32 3.4.1 Analysis of the electrical characteristics of novel TFT with new ohmic contact layer…………..…………………….……..33 Chapter 4 - Conclusion…………..……………..............………....36 References..………………………………………………….............38 Tables.……………………..…………………………….…................43 Figures…………………………………..………….………………...44

    Chapter 1
    [1.1] W. C. O’MARA, Liquid crystal flat panel displays: manufactoring, science
    & technology, 1 ed. (Van Nostrand Reinhold, New York, 1993).
    [1.2] P. G. LECOMBER, W. E. SPEAR, and A. GHAITH, Electron. Lett. 15, 179 (1979).
    [1.3] H. HAYAMA and M. MATSUMURA, Appl. Phys. Lett. 36, 754 (1980).
    [1.4] M. J. POWELL, B. C. EASTON, and O. F. HILL, Appl. Phys. Lett. 38, 794 (1981).
    [1.5] H. Yamamoto, H. Matsumaru, K. Shirahashi, M. Nakatani, A. Sasano, N. Konishi, K. Tsutsui, and T. Tsukada, IEDM Tech. Dig.,851 (1990)
    [1.6] G. Kawachi, E. Kimura, Y. Wakui, N. Konishi, H. Yamamoto, Y. Matsukawa, and A. Sasano, IEEE Trans. Elec. Devices., 41, 1120(1994).
    [1.7] D. B. Thomason, T. N. Jackson, IEEE ELECTRON DEVICE LETTERS,
    18,8(1997).
    [1.8] D. B. Thomason, T. N. Jackson, IEEE ELECTRON DEVICE LETTERS, 19,
    4(1998).
    [1.9] G. Kawachi, E. Kimura, Y. Wakui, N. Konishi, H. Yamamoto, Y. Matsukawa, A. Sasano, Electron Devices, IEEE Transactions on ., 41, 7(1994)
    [1.10] R. M. A. Dawson, M. G. Kane, SID Tech. Dig., 372(2001)
    [1.11]T.Tsujimura, Y.Kobayashi, K.Murayama, A.Tanaka, M.Morooka, E. Fukumoto, H.Fujimoto, J.Sekine, K. Kanoh, K. Takeda, K. Miwa, M. Asano, N. Ikeda, S. Kohara, and S. Ono, SID Tech. Dig.,6(2003)
    [1.12] Y. He, R. Hattori, J. Kanicki, IEEE TRANSACTIONS ON ELECTRON DEVICE,48, 7(2001).
    [1.13] A. Nathan, D. Striakhilev, .Pervati, .K. akariya,.A.Kumar, K. S. Karim, A. Sazonov, Materials and Devices Technology as held at the 2003 MRS Spring Meeting.; 29(2003)
    [1.14] M. Katayama, K. Nakazawa, Y. Kanemori, M. Katagami, Y. Kanatani, K. Yano, M. Hijikigawa, in Display Research Conference., 243(1991)
    [1.15] I. Balberg, Y. Lubianiker, Phys. Rev. B , 8709(1993)
    [1.16] T. Sunata et al., Proc. Soc. Inform. Display, vol. 27, pp. 229-234(1986)
    [1.17] T. Sakai, M. Shimbo, M. Suzuki, T. Yamazaki, and R. Sakami, in Conf. Rec. Int. Display Research Conf, 1985, pp. 30-31.
    [1.18] N. Hirano, N. Ikeda, H. Yamaguchi, S. Nishida, Y. Hirai, and S. Kaneko,
    IDRC ’94, International Display Research Conference, CA, p. 369(1994).
    [1.19] Simon Wing-Bun Tam, The Intra-Nodal Capacitances of Polycrystalline Silicon Thin Film Transistors: Measurement and Modelling, Ph.D. Thesis for University of Cambridge, 1994
    [1.20] J. K. Yoon, Y. H. Jang, B. K. Kim, H. S. Choi, B. C. Ahn, and C. Lee, J. Non-Cryst. Solids 164-166, 747(1993)
    [1.21] C. van Berkel and M. J. Powell, J. Appl. Phps., vol. 60, pp. 1521-1527(1986)
    [1.22]Sandrine Martin, Jerzy Kanicki, Nicolas Szydlo, Alain Rolland “Analysis of the amorphous silicon thin film transistors behavior under illumination” AM-LCD ‘97.
    [1.23] RH Reuss et al., Proc. IEEE ,93, 1239–1256 (2005).
    [1.24] C. H. Lee, A. Sazonov, A. Nathan, Appl. Phys. Lett., 86,222106 (2005)
    [1.25] I-C. Cheng, S. Allen, S. Wagner, Journal of Non-Crystalline Solids 338–340, 720–724 (2004).
    [1.26] A. Shah et al., Thin film silicon and solar cell technology, Progress in photovoltaics: Research and applications, Vol. 12,1-30(2004)
    [1.27]S.M.Sze, SEMICONDUCTOR DEVICES Physics and Technology 2nd EDITION, Ch.2, section.1, Wiley, New York, 2001
    [1.28] Jerzy Kanicki, Applied Physics Letters, Volume 53, Issue 20, November 14, 1988, pp.1943-1945
    [1.29] M KONDO, Y CHIDA, A MATSUDA, Journal of non-crystalline solids 198-200, 178-181
    [1.30] Hideharu Matsuura, Tetsuhiro Okuno, Hideyo Okushi, Satoshi Yamasaki, Akihisa Matsuda, Nobuhiro Hata, Hidetoshi Oheda and Kazunobu Tanaka , Jpn. J. Appl. Phys. Vol. 22 (1983) L197-L199
    Chapter 3
    [3.1]KS Lee, JH Choi, SK Kim, HB Jeon, J Jang, Applied Physics Letters 69, 2403 (1996)
    [3.2]JH Lee, BH You, KS Shin, MK Han, Mater. Res. Soc. Symp. Proc. Vol. 862 , 2005
    [3.3] Kunal S. Girotra et al., SID Symposium Digest of Technical Papers 37, 1972 (2006)
    [3.4] C.-H. Lee, A. Sazonov, and A. Nathan, “High-performance n-channel 13.56 MHz plasma-enhanced chemical vapor deposition nanocrystalline silicon thin-film transistors,” J.Vac.Sci.Technol.A, 24: 618-623 (2006)
    [3.5] M Mulato, Y Chen, S Wagner, AR Zanatta, Journal of Non-Crystalline Solids, Volumes 266-269, Part 2,1 May 2000, Pages 1260-1264
    [3.6] Mohammad Reza Esmaeili Rad, Czang-Ho Lee, Andrei Sazonov, and Arokia Nathan, Mater. Res. Soc. Symp. Proc. Vol. 910, (2006)
    [3.7]P. Roca i Cabarrocas, R.Brenot, P. Bulkin, R. Vanderhaghen, B. Dr□villon, I. French. , Journal of Applied Physics 86, 7079 (1999)
    [3.8] M KONDO, Y CHIDA, A MATSUDA, Journal of non-crystalline solids 198-200, 178-181
    [3.9] Hideharu Matsuura, Tetsuhiro Okuno, Hideyo Okushi, Satoshi Yamasaki, Akihisa Matsuda, Nobuhiro Hata, Hidetoshi Oheda and Kazunobu Tanaka , Jpn. J. Appl. Phys. Vol. 22 (1983) L197-L199

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE