研究生: |
李茜茹 Lee, Chien-Ju |
---|---|
論文名稱: |
利用眼球劑量計進行眼球劑量評估與驗證研究 Assessment and Verification Studies for Dose of Lens of Eyes by Using Eye Dosimeters |
指導教授: |
許靖涵
Hsu, Ching-Han 許芳裕 Hsu, Fang-Yuh |
口試委員: |
游澄清
You, Cheng-Cing 陳拓榮 Chen, Tuo-Rong |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 123 |
中文關鍵詞: | 介入性診療 、輻射工作人員 、蒙地卡羅計算程式 、眼球劑量 、熱發光劑量計 、光刺激發光劑量計 |
外文關鍵詞: | interventional radiology, radiation worker, MCNP, dose of the eye, TLD, OSLD |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因應ICRP 118號報告對於輻射工作人員眼球劑量建議限值由ICRP 103號報告的每人每年最高150 mSv,下修至每人每年最高50 mSv、每五年加總不超過100 mSv,因為此眼球劑量建議值的下修,使得世界各方的學者更加重視眼球劑量相關的議題,也更致力於找出準確量測眼球劑量的方法。而眼球劑量尤在醫用輻射領域中受到關注,且當中從事介入性診療的醫事人員由於必須長時間曝露於輻射之下,因此是輻射作業人員接受眼球輻射的高危險群,而通常國內介入性診療醫事人員僅以人員劑量計佩章做眼球劑量量測,而劑量計佩章往往因穿著鉛衣與配掛的位置遠離眼球而無法正確的評估眼球劑量,因此國內未來將要求有眼球劑量疑慮的輻射工作人員除了劑量計佩章外,應再於頭部靠近眼球處配戴眼球劑量計,做為評估眼球劑量之用。但即使是使用眼球劑量計,也會因配掛的位置不同,其所評估的劑量相對於真實眼球劑量會有差異。
本篇論文主要使用蒙地卡羅程式模擬以及實際假體劑量計量測兩種方式,評估輻射工作人員配掛在不同位置的眼球劑量計的劑量結果和真實眼球劑量之間的轉換係數;並探討對不同型式眼球劑量計使用於不同形狀、大小之頭部假體之不同位置,在不同輻射場下的劑量轉換係數。另外,也會進行實際實驗量測、文獻結果比對以驗證評估結果的正確度。
In response to ICRP 118 report, the suggested dose limit of the lens of the eye for radiation workers has been revised down from ICRP 113, 150 mSv/y per person, to 50 mSv/y and total 100 mSv/5 y per person. Because of the revision of the recommended limit of the lens of the eye, scholars all over the world seriously concern about the issues, and also devote more efforts to find the accurate methods of measuring dose of the lens of the eye. Dose of the lens of the eye are great concerned in the field of medicine radiation application, and especially for staffs working at interventional radiology departments. They need to exposure to radiation for a long time, so they are high risked people to receive more dose of the lens than other radiation workers. Staffs at imterventional radiology departments in Taiwan usually only wear personnel dosimeter badges as the measurement for the dose of lens of eyes, but it may evaluate inaccurately because of wearning the protective aprons and the location of dosimeter badges are far from the lens of the eye. Therefore, domestic radiation workers who have doubts about the dose of the lens of the eye will require to wear the dose badge and the dosimeters on the head that close to the eye to evaluate the accurate dose of the eye in the future. However, even when using eye dosimeters, the estimated dose relative to the actual dose of the lens of the eye may vary depending on the position of the dosimeter devices.
In this study, Monte Carlo simulation and actual measurements for dosimeters are used to evaluate the conversion coefficients between the result of the dosimeters worn at different positions on head by radiation workers and the real dose of eye. In addition, comparing the dose conversion coefficients for dosimeters placed at different positioned on different shapes and sizes of the head phantoms, under different radiation fields. Besides, the comparison among simulation, actual measurements and literatures will also conduct to verify the accuracy of the evaluated results.
1. Radiation, U.N.S.C.o.t.E.o.A., UNSCEAR 2008 Report, Sources and effects of ionizing radiation, vol. I. Annex A: medical radiation exposures, United Nations, New York, USA, 2008.
2. Kamenopoulou, V., G. Drikos, and P. Dimitriou, Dose constraints to the individual annual doses of exposed workers in the medical sector. European journal of radiology, 2001. 37(3): p. 204-208.
3. Martin, C., A review of radiology staff doses and dose monitoring requirements. Radiation protection dosimetry, 2009. 136(3): p. 140-157.
4. Ciraj‐Bjelac, O., et al., Risk for radiation‐induced cataract for staff in interventional cardiology: Is there reason for concern? Catheterization and Cardiovascular Interventions, 2010. 76(6): p. 826-834.
5. Icrp, A., et al., ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs–threshold doses for tissue reactions in a radiation protection context. Ann. ICRP, 2012. 41: p. 1-322.
6. 行政院原子能委員會, 全國輻射工作人員劑量資料統計年報, 2017.
7. Rehani, M.M., et al., Radiation and cataract. Radiation protection dosimetry, 2011. 147(1-2): p. 300-304.
8. Ainsbury, E., et al., Radiation cataractogenesis: a review of recent studies. Radiation research, 2009. 172(1): p. 1-9.
9. Neriishi, K., et al., Postoperative cataract cases among atomic bomb survivors: radiation dose response and threshold. Radiation research, 2007. 168(4): p. 404-408.
10. Nakashima, E., K. Neriishi, and A. Minamoto, A reanalysis of atomic-bomb cataract data, 2000–2002: a threshold analysis. Health physics, 2006. 90(2): p. 154-160.
11. Worgul, B., et al., Cataracts among Chernobyl clean-up workers: implications regarding permissible eye exposures. Radiation research, 2007. 167(2): p. 233-243.
12. Ciraj-Bjelac, O., et al., Radiation-induced eye lens changes and risk for cataract in interventional cardiology. Cardiology, 2012. 123(3): p. 168-171.
13. Cucinotta, F., et al., Space radiation and cataracts in astronauts. Radiation research, 2001. 156(5): p. 460-466.
14. Chodick, G., et al., Risk of cataract after exposure to low doses of ionizing radiation: a 20-year prospective cohort study among US radiologic technologists. American journal of epidemiology, 2008. 168(6): p. 620-631.
15. Snell, R.S. and M.A. Lemp, Clinical anatomy of the eye. 2013: John Wiley & Sons.
16. LTD., E.P.S.; Available from: http://pgheyemds.com/our-services/cataract-surgery/.
17. Delcourt, C., et al., Risk factors for cortical, nuclear, and posterior subcapsular cataracts: the POLA study. American journal of epidemiology, 2000. 151(5): p. 497-504.
18. Brown, N.P., The lens is more sensitive to radiation than we had believed. 1997, BMJ Publishing Group Ltd.
19. Robman, L. and H. Taylor, External factors in the development of cataract. Eye, 2005. 19(10): p. 1074-1082.
20. O’Connor, U., et al., Occupational radiation dose to eyes from endoscopic retrograde cholangiopancreatography procedures in light of the revised eye lens dose limit from the International Commission on Radiological Protection. The British journal of radiology, 2013. 86(1022): p. 20120289.
21. Theodorakou, C. and J. Horrocks, A study on radiation doses and irradiated areas in cerebral embolisation. The British journal of radiology, 2003. 76(908): p. 546-552.
22. Vano, E., et al., Influence of patient thickness and operation modes on occupational and patient radiation doses in interventional cardiology. Radiation protection dosimetry, 2006. 118(3): p. 325-330.
23. Seals, K.F., et al., Radiation-induced cataractogenesis: a critical literature review for the interventional radiologist. Cardiovascular and interventional radiology, 2016. 39(2): p. 151-160.
24. Ginjaume Egido, M. and A. Carnicer, Oramed: optimization of radiation protection of medical staff. 2012.
25. 行政院原子能委員會, 游離輻射防護安全標準, 2005.
26. Theocharopoulos, N., et al., Occupational exposure in the electrophysiology laboratory: quantifying and minimizing radiation burden. The British journal of radiology, 2006. 79(944): p. 644-651.
27. Vano, E., et al., Radiation exposure to medical staff in interventional and cardiac radiology. The British journal of radiology, 1998. 71(849): p. 954-960.
28. Behrens, R., et al., H p (0.07) photon dosemeters for eye lens dosimetry: Calibration on a rod vs. a slab phantom. Radiation protection dosimetry, 2012. 148(2): p. 139-142.
29. Agency, I.A.E., Implications for occupational radiation protection of the new dose limit for the lens of the eye. IAEA-TECDOC-1731, 2013.
30. Bordy, J., Monitoring of eye lens doses in radiation protection. Radioprotection, 2015. 50(3): p. 177-185.
31. Eyal, P., et al., An improved method for estimating the dose to the lens of the eye using Hp (10) and Hp (0.07) measurements. Journal of Nuclear Engineering and Radiation Science, 2017. 3(3).
32. Strahlenschutzkommission, Monitoring the Eye Lens Dose, 2010.
33. Behrens, R. and G. Dietze, Monitoring the eye lens: which dose quantity is adequate? Physics in medicine & biology, 2010. 55(14): p. 4047.
34. Behrens, R. and O. Hupe, Influence of the phantom shape (slab, cylinder or Alderson) on the performance of an H p (3) eye dosemeter. Radiation protection dosimetry, 2016. 168(4): p. 441-449.
35. Kramer, R., et al., The calculation of dose from external photon exposures using reference human phantoms and Monte-Carlo methods. Pt. 1. 1982, Gesellschaft fuer Strahlen-und Umweltforschung mbH Muenchen.
36. Behrens, R., G. Dietze, and M. Zankl, Dose conversion coefficients for electron exposure of the human eye lens. Physics in Medicine & Biology, 2009. 54(13): p. 4069.
37. Behrens, R. and G. Dietze, Dose conversion coefficients for photon exposure of the human eye lens. Physics in Medicine & Biology, 2010. 56(2): p. 415.
38. Manger, R.P., M.B. Bellamy, and K.F. Eckerman, Dose conversion coefficients for neutron exposure to the lens of the human eye. Radiation protection dosimetry, 2012. 148(4): p. 507-513.
39. Bilski, P., et al., The new EYE-D™ dosemeter for measurements of Hp (3) for medical staff. Radiation measurements, 2011. 46(11): p. 1239-1242.
40. Geber, T., M. Gunnarsson, and S. Mattsson, Eye lens dosimetry for interventional procedures–relation between the absorbed dose to the lens and dose at measurement positions. Radiation measurements, 2011. 46(11): p. 1248-1251.
41. da Silva, E.H., et al., A study of the underestimation of eye lens dose with current eye dosemeters for interventional clinicians wearing lead glasses. Journal of Radiological Protection, 2020. 40(1): p. 215.
42. SW, A. and L. LH, An instrumented phantom system for analog computation of treatment plans. The American journal of roentgenology, radium therapy, and nuclear medicine, 1962. 87: p. 185-195.
43. da Silva, E.H., et al., Where is the best position to place a dosemeter in order to assess the eye lens dose when lead glasses are used? Radiation Measurements, 2017. 106: p. 257-261.
44. Krstic, D. and D. Nikezic, External doses to humans from 137Cs in soil. Health physics, 2006. 91(3): p. 249-257.
45. Krstić, D. and D. Nikezić, Input files with ORNL—mathematical phantoms of the human body for MCNP-4B. Computer Physics Communications, 2007. 176(1): p. 33-37.
46. Krstic, D. and D. Nikezic, Conversion coefficients for age-dependent ORNL phantoms from 137Cs in soil as a source of external exposure. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007. 580(1): p. 540-543.
47. Poludniowski, G.G. and P.M. Evans, Calculation of x‐ray spectra emerging from an x‐ray tube. Part I. Electron penetration characteristics in x‐ray targets. Medical physics, 2007. 34(6Part1): p. 2164-2174.
48. Poludniowski, G.G., Calculation of x‐ray spectra emerging from an x‐ray tube. Part II. X‐ray production and filtration in x‐ray targets. Medical physics, 2007. 34(6Part1): p. 2175-2186.
49. Attix, F.H., Introduction to radiological physics and radiation dosimetry. 2008: John Wiley & Sons.
50. Behrens, R. and G. Dietze, Dose conversion coefficients for photon exposure of the human eye lens. Phys Med Biol, 2011. 56(2): p. 415-37.
51. Zankl, M., et al., The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods Pt 7 Organ doses due to parallel and environmental exposure geometries. 1997: Germany. p. 193.
52. Magee, J.S., et al., Derivation and application of dose reduction factors for protective eyewear worn in interventional radiology and cardiology. Journal of radiological protection, 2014. 34(4): p. 811.