研究生: |
黃馨滿 Huang, Hsin-Man |
---|---|
論文名稱: |
建構彩色濾光膜及微透鏡缺陷樣型分析之資料挖礦架構 Constructing a Data Mining Framework for Analyzing Defect Types of Color Filter and Microlens |
指導教授: | 簡禎富 |
口試委員: |
方友平
張國浩 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 32 |
中文關鍵詞: | 彩色濾光膜及微透鏡製程 、缺陷樣型 、資料挖礦 、列聯表分析 、關聯規則 |
外文關鍵詞: | Color Filter and Microlens Process, Defect Type, Data Mining, Crosstab Analysis, Association Rules |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
彩色濾光膜及微透鏡製程為製造CMOS影像感測器的一環,利用於相機、手機鏡頭。影像感測元件彩色濾光膜廠進行製造時可能會在感測區或非感測區造成缺陷樣型導致缺陷率提升,為了提升產品良率,希望於製造過程找出造成缺陷樣型的機台等原因,即時進行修復並減少重工情形。
目前多半是憑藉工程師的經驗來做故障排除的問題,錯誤及試驗法不夠快速且準確度不高,很容易造成人為對照的失誤及因為經驗不足而誤判,故本研究目的為發展一套彩色濾光膜及微透鏡資料挖礦架構模式,以協助工程師診斷造成缺陷樣型的原因。透過蒐集影像感測元件彩色濾光膜廠的缺陷樣型相關資料,結合列聯表分析的卡方獨立性檢定與Cramer’s V相關係數,利用關聯規則切割訓練集資料建立模型,測試集資料計算正確率篩選合適模型,配合演算法的支持度、信賴度與增益三個指標,定義篩選規則門檻值整理造成缺陷樣型的潛藏規則以進行規則評估。
CMOS image sensor includes color filter and microlens process, which is used to manufacture cameras and phone lens. In color filter and image sensor manufacturing company’s manufacturing process, it may cause various defect types and defect rate in sensing or non-sensing area. To improve product’s yield and find causes of defect type, we should repair the tools in time and reduce the rework rate.
Now it almost uses engineers’ experience for trouble shooting. Try and error method is not quick enough and may cause errors because of less of experience. This research is aim for constructing a data mining framework of color filter and microlens to help engineers detecting causes of defect types. By using defect types’ data in fab, we could combine Chi-square test for independence, Cramer’s V correlation coefficient and divide training data set of Association Rules to build model. Using the correct rate of testing data set to select suitable model and setting threshold of three indexes:support, confidence and lift to screen useful rules before executing evaluation.
簡禎富、林鼎浩、徐紹鐘、彭誠湧(2001),建構半導體允收測試資料挖礦架構及其實證研究,工業工程學刊,18卷4期,頁37-48。
簡禎富、李培瑞、彭誠湧(2003),半導體製程資料特徵萃取與資料挖礦之研究,資訊管理學報,10卷1期,頁63-84。
簡禎富(2004),建構半導體製造管理目標層級架構與製造資料之資料挖礦,工業工程學刊,21卷4期,頁313-327。
簡禎富、王興仁、陳麗妃(2005),利用資料挖礦提升半導體廠製造技術員人力資源管理品質,品質學報,12卷1期,頁9-28。
彭金堂、張盛鴻、簡禎富、楊景晴(2005),建構關聯規則資料挖礦架構及其在台電配電事故定位之研究,資訊管理學報,12卷4期,頁121-141。
簡禎富(2005),決策分析與管理,雙葉書廊,台北。
簡禎富、施義成、林振銘、陳瑞坤(2005),半導體製造技術與管理,清華大學出版社,新竹。
陳榕庭(2007),半導體封裝與測試工程─ CMOS影像感測器實務,全華圖書股份有限公司,台北。
簡禎富、林昀萱、鄭仁傑(2008),建構模糊決策樹及其在有交互作用之半導體資料之資料挖礦以提昇良率之研究,品質學報,15卷3期,頁193-210。
雷良煥、黃吉成、徐永珍(2010),後來居上的CMOS影像感測器,物理雙月刊,32卷1期,頁24-29。
Berry, M. and Linoff, G. (1997), Data Mining Techniques : For Marketing, Sales, and Customer Support, New York.
Bi, X., Zhuang, C. and Ding, H. (2009), “A New Defect Inspection Way for TFT-LCD Using Level Set Method,” IEEE Signal Processing Letters, Vol. 16, No. 4, pp.311-314.
Braha, D. and Shmilovici, A. (2002), “Data mining for improving a cleaning process in the semiconductor industry,” IEEE Transactions on Semiconductor Manufacturing, Vol. 15, No. 1, pp.91-101.
Braha, D. and Shmilovici, A. (2003), “On the use of decision tree induction for discovery of interactions in a photolithographic process,” IEEE Transactions on Semiconducter Manufacturing, Vol.16, No. 4, pp. 644–652.
Casali, A. and Ernst, C. (2012), “Discovering Correlated Parameters in Semiconductot Manufacturing Processes : A Data Mining Approach,” IEEE Transactions on Semiconductor Manufacturing, Vol. 25, No. 1, pp.118-127.
Chang, C.-K., Hsiao, Y.-K., Yang, S.-Y. and Lu, K.-L. (2001), “Planarization Wrinkle in CIS Color Filter Process,” SPIE Proceedings, Vol.4406, pp. 41-48.
Chen, A. and Hong, A. (2010), “Sample-Efficient Regression Trees (SERT) for Semiconductor Yield Loss Analysis,” IEEE Transaction on Semiconductor Manufacturing, Vol.23, No3., pp.358-369.
Chen, L.-F., Su, C.-T. and Chen M.-H. (2009), “A Neural-Network Approach for Defect Recognition in TFT-LCD Photolithography Process,” IEEE Transaction on Electronics Packaging Manufacturing, Vol. 32, No. 1, pp. 1-8.
Chien, C.-F., Wang, W.-C. and Cheng, J.-C. (2007), “Data Mining for Yield Enhancement in semiconductor Manufacturing and An Empirical Study,” Expert Systems with Applications, Vol. 33, No. 1, pp. 192-198.
Chien, C.-F., Hsu, C.-Y. and Chen P.-L. (2012), “Semiconductor Fault Detection and Classification for Yield Enhancement and Manufacturing Intelligence,” Flexible Services and Manufacturing Journal.
Hsu, C.-Y., Chien, C.-F., Lin, K.-Y. and Chien, C.-Y. (2010), “Data Mining for Yield Enhancement in TFT-LCD Manufacturing : An Empirical Study,” Journal of the Chinese Institute of Industrial Engineers, Vol. 27, No. 2, pp.140-156.
Kawachi, G., Kimura, E., Wakui, Y., Konishi, N. and Yamamoto, H. (1994), “A Novel Technology for a-Si TFT-LCD’s with Buried ITO Electrode Structure,” IEEE Transaction on Electron Devices, Vol. 41, No. 7, pp. 1120-1124.
Li, W.-H. and Tsai, D.-M. (2011), “Defect inspection in Low-Contrast LCD images Using Hough Transform-Based Nonstationary Line Detection,” IEEE Transactions on Industrial Informatics, Vol. 7, No. 1, pp.136-147.
Saeki, H., Ikeno, M., Suzuki, S., Kawashima, H. and Uematsu, S. (1985), “Effect of Microlens Array for Mos Color Imager,” IEEE Transaction on Customer Electronics, Vol. CE-31, No. 2, pp. 88-95.
Tseng, D.-C., Chung, I.-L., Tsai, P.-L. and Chou, C.-M. (2011), “Defect Classification for LCD Color Filters Using Neural-Network Decision Tree Classifier,” International Journal of Innovative Computing, Information and Control, Vol. 7, No. 7, pp. 3695-3707.
Tu, K.-W., Lee, C.-S. and Lu, H.-S. (2009), “A Novel Statistical Method for Automatically Partitioning Tools According to Engineers’ Tolerance Control in Process Improvement,” IEEE Transaction on Semiconductor Manufacturing, Vol.22, No3., pp.373-380.