簡易檢索 / 詳目顯示

研究生: 孫偉哲
Sun, Wei-Che
論文名稱: 薄(厚)膜材料熱傳導係數量測與探討
Measurement method and discussion of thin (thick) film material thermal conductivity
指導教授: 饒達仁
Yao, Da-Jeng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 75
中文關鍵詞: 熱傳導係數薄膜厚膜界面熱阻量測
外文關鍵詞: thermal conductivity, thin film, thick film, interfacial thermal resistance, measurement
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當物體的尺寸縮小至微奈米等級的時候,許多的材料性質均會有所改變。同時薄膜厚度小至微奈米尺度時,熱載子(carrier)-聲子(phonon)與自由電子(free electron)的散射效應(scattering)增強,使的薄膜之有效熱傳導係數降低。而薄膜之熱邊界效應(thermal boundary effect)也因薄膜厚度減少而增加。因此本研究首先利用3ω method量測相變化記憶體材料以及光碟片中不同材料所沉積的介電層熱傳導係數,並進一步探討材料與量測而得的熱傳導係數值其相關性以及應用。接著針對3ω method的缺點,利用二維熱傳模型推導出一組數學的解析解應用於量測薄膜厚度50nm~2μm,熱傳導係數範圍約0~10W/mK之間的平行線法(Parallel-Strips Method)。利用易取得的簡單量測儀器,建構一套量測薄膜的系統。而平行線法最大的優點為試片製做簡單,量測時間快速,系統成本低廉,儀器易取得以及量測樣品廣泛。實驗方面利用PECVD、Thermal、E-beam三種不同方式沉積的二氧化矽當作量測材料,成功的將E-beam evaporation、PECVD、Thermal量測出本質熱傳導係數分別為0.96 W/mK、1.05 W/mK、1.504 W/mK以及邊界熱阻分別為2.58×10-8m2K/W、2.84×10-8 m2K/W、3.57×10-8m2K/W。最後根據平行線法的理論基礎,進一步建立厚膜的理論以及量測系統。膜厚範圍適用於10μm~1mm,熱傳導係數值適用於0.01W/mK~10 W/mK的膜厚差異法(Thickness Difference Method)。並以負光阻SU8-3050為量測材料,成功的量測出SU-8的本質熱傳導係數為0.2W/mK,也印證Thickness Difference Method的正確性。總體而言本文利用3ω method、Parallel-Strips Method、Thickness Difference Method三種不同的方法成功的建立膜厚範圍介於200nm~1mm之內以及熱傳導係數介於0.01~10W/mK範圍之內的熱傳導係數量測方法。並運用這些方法探討不同的功能性材料熱傳導係數以及驗證其量測方法的正確性。


    It is well known that material prosperities will be different as the material in micro and nano scale. For instance, the effect of interface boundary and the carriers such as phonon and free-electron scattering have become the primary issue in thin film material. In this study, measurements of thermal conductivities of phase change memory material and several dielectric films by 3ω method is investigated. However, the limitation of 3ω method restricts the film thickness under 1 μm. For film thickness of 1um to 1 mm, further studies of pertinent measuring methods such as parallel-strip method and thickness difference method are constructed. Parallel-strip method is suitable for film thickness of 50 nm to 2 μm. The intrinsic thermal conductivities and boundary thermal resistances of three kinds of SiO2 films are measured, in which these specific SiO2 films are fabricated by PECVD deposition, thermal furnace growing and E-bean deposition respectively. In addition, thickness difference method is suitable for thick films where film thickness is in a range of 10 μm to 1 mm. The intrinsic thermal conductivities of three kinds of SU8-3050 thick films are also measured, in which the thickness of these specific SU8-3050 films are 42, 70 and 95 μm respectively. In short, the objective of this work provides three methods which thermal conductivities and boundary thermal resistance of dielectric films are characterized and are verified with the theory and literatures.

    第一章 緒論 1 1.1 研究動機 1 1.2 本文目的 3 1.3 本文架構 4 第二章 文獻回顧 6 2.1電性加熱感溫技術(Electrical heating and sensing) 7 2.2光學加熱法(Optical Heating Method) 13 2.3 光學與電性合用法(Optical- Electrical hybrid method) 17 第三章 3ω method 20 3.1 理論介紹 20 3.1.1TCR量測 22 3.1.2金屬加熱線之溫度變化ΔTheater 24 3.1.3待測薄膜與基板之介面溫度變化ΔTinterface 26 3.2 實驗架構 27 3.3 相變化記憶體材料熱傳導係數探討 29 3.3.1樣品製備以及量測方法介紹 31 3.3.2量測結果與討論 34 3.4介電薄膜熱傳導係數探討 38 3.4.1待測樣品製備 40 3.4.2量測結果與討論 41 第四章 Parallel-Strips Method 43 4.1量測原理介紹 44 4.1.1理論介紹 44 4.1.2 量測模型分析 47 4.2實驗架構與樣品製備 50 4.2.1 系統架構 50 4.2.2 樣品製備 51 4.3量測結果與討論 52 第五章 Thickness Difference Method 56 5.1 基本理論介紹 57 5.2 樣品製備與實驗架構 62 5.2.1試片製備 62 5.2.2量測系統架構 66 5.3 量測結果與討論 67 第六章 結論與展望 70 第七章 參考文獻 72

    [1] J. P. Reifenberg, D. L. Kencke, and K. E. Goodson, “The impact of thermal boundary resistance in phase-change memory devices,” IEEE Electron Device Lett., vol. 29, no. 10, pp. 1112–1114, 2008.
    [2] T. Paskova, D. A. Hanser, and K. R. Evans, "GaN Substrates for III-Nitride Devices," Proceedings of the IEEE, vol. 98, pp. 1324-1338, 2010.
    [3] T. Beechem, A. Christensen, S. Graham, and D. Green, "Micro-Raman thermometry in the presence of complex stresses in GaN devices," Journal of Applied Physics, vol. 103, pp. 124501-8, 2008.
    [4] J. Bodzenta, B. Burak, A. Jagoda, and B. Stanczyk, "Thermal conductivity of AlN and AlN-GaN thin films deposited on Si and GaAs substrates," Diamond and Related Materials, vol. 14, pp. 1169-1174, 2005.
    [5] T. Borca-Tasciuc and G. Chen, "Experimental Techniques for Thin-Film Thermal Conductivity Characterization," in Thermal Conductivity, pp. 205-237, 2004.
    [6] D. G. Cahill, "Thermal Conductivity Measurements from 30K-750K: The 3 Omega Method," Rev. Sci. Instrum., vol. 61, p. 802~808, 1990.
    [7] S. M. Lee and D. G. Cahill, "Heat Transport in Thin Dielectric Films," J. Appl. Phys. , vol. 81, pp. 2590-2595, 1997.
    [8] T. Borca-Tasciuc, A. R. Kumar, and G. Chen, "Data reduction in 3 omega method for thin-film thermal conductivity determination," Review of Scientific Instruments, vol. 72, pp. 2139-2147, 2001.
    [9] L. Lu, W. Yi, and D. L. Zhang, "3 omega method for specific heat and thermal conductivity measurements," Review of Scientific Instruments, vol. 72, pp. 2996-3003, 2001
    [10] F. Chen, J. Shulman, Y. Xue, C. W. Chu, and G. S. Nolas, "Thermal conductivity measurement under hydrostatic pressure using the 3 omega method," Review of Scientific Instruments, vol. 75, pp. 4578-4584, 2004.
    [11] B. W. Olson, S. Graham, and K. Chen, "A practical extension of the 3 omega method to multilayer structures," Review of Scientific Instruments, vol. 76, pp. 053901-7, 2005.
    [12] C. Dames and G. Chen, "1 omega, 2 omega, and 3 omega methods for measurements of thermal properties," Review of Scientific Instruments, vol. 76, pp. 124902-14, 2005.
    [13] Z. Chen, J. Yang, P. Zhuang, M. Chen, J. Zhu, and Y. Chen, "Thermal conductivity measurement of InGaAs/InGaAsP superlattice thin films," Chinese Science Bulletin, vol. 51, pp. 2931-2936, 2006.
    [14] H.-K. Lyeo, D. G. Cahill, B.-S. Lee, J. R. Abelson, M.-H. Kwon, K.-B. Kim, S. G. Bishop, and B.-k. Cheong, "Thermal conductivity of phase-change material Ge[sub 2]Sb[sub 2]Te[sub 5]," Applied Physics Letters, vol. 89, pp. 151904-3, 2006.
    [15] D.-W. Oh, A. Jain, J. K. Eaton, K. E. Goodson, and J. S. Lee, "Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3[omega] method," International Journal of Heat and Fluid Flow, vol. 29, pp. 1456-1461, 2008.
    [16] J. Alvarez-Quintana and J. Rodriguez-Viejo, "Interfacial effects on the thermal conductivity of a-Ge thin films grown on Si substrates," Journal of Applied Physics, vol. 104, pp. 074903-4, 2008.
    [17] S.-M. Lee, "Thermal conductivity measurement of fluids using the 3 omega method," Review of Scientific Instruments, vol. 80, pp. 024901-7, 2009.
    [18] Y. C. Tae and et al., "Measurement of the thermal conductivity of a water-based single-wall carbon nanotube colloidal suspension with a modified 3- omega method," Nanotechnology, vol. 20, p. 315706, 2009.
    [19] H.-F. Lee, B. Samuel, and M. Haque, "In-plane thermal conductance measurement of one-dimensional nanostructures," Journal of Thermal Analysis and Calorimetry, vol. 99, pp. 495-500, 2010.
    [20] B. Revaz, B. L. Zink, and F. Hellman, "Si-N membrane-based microcalorimetry: Heat capacity and thermal conductivity of thin films," Thermochimica Acta, vol. 432, pp. 158-168, 2005.
    [21] N. Stojanovic, Y. Jongsin, E. B. K. Washington, J. M. Berg, M. W. Holtz, and H. Temkin, "Thin-Film Thermal Conductivity Measurement Using Microelectrothermal Test Structures and Finite-Element-Model-Based Data Analysis," Microelectromechanical Systems, Journal of, vol. 16, pp. 1269-1275, 2007.
    [22] D. R. Queen and F. Hellman, "Thin film nanocalorimeter for heat capacity measurements of 30 nm films," Review of Scientific Instruments, vol. 80, pp. 063901-7, 2009.
    [23] N. Markocsan, P. Nyl□n, J. Wigren, and X. Li, "Low Thermal Conductivity Coatings for Gas Turbine Applications," Journal of Thermal Spray Technology, vol. 16, pp. 498-505, 2007.
    [24] M. A. Panzer, G. Zhang, D. Mann, X. Hu, E. Pop, H. Dai, and K. E. Goodson, "Thermal Properties of Metal-Coated Vertically Aligned Single-Wall Nanotube Arrays," Journal of Heat Transfer, vol. 130, pp. 052401-9, 2008.
    [25] 施智超,方偉權,呂明生,魏百駿,林麗瓊, "薄膜熱傳導特性應用分析技術介紹," 工業材料, 頁144-149, 2008.
    [26] A. J. Schmidt, R. Cheaito, and M. Chiesa, "A frequency-domain thermoreflectance method for the characterization of thermal properties," Review of Scientific Instruments, vol. 80, pp. 094901-6, 2009.
    [27] S. Shen, A. Narayanaswamy, S. Goh, and G. Chen, "Thermal conductance of bimaterial microcantilevers," Applied Physics Letters, vol. 92, pp. 063509-3, 2008.
    [28] M. Toda, T. Ono, F. Liu, and I. Voiculescu, "Evaluation of bimaterial cantilever beam for heat sensing at atmospheric pressure," Review of Scientific Instruments, vol. 81, pp. 055104-6, 2010.
    [29] S. Shen, A. Henry, J. Tong, R. Zheng, and G. Chen, "Polyethylene nanofibres with very high thermal conductivities," Nat Nano, vol. 5, pp. 251-255, 2010.
    [30] D. G. Cahill, "Thermal Conductivity Measurements from 30K-750K: The 3 Omega Method," Rev. Sci. Instrum., vol. 61, p. 802~808, 1990.
    [31] 劉勇志, "3ω方法量測熱傳導係數之溫度效應".國立清華大學碩士論文, 2004.
    [32] L. W. Martin, Y. H. Chu, and R. Ramesh, "Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films," Materials Science and Engineering: R: Reports, vol. 68, pp. 89-133, 2010.
    [33] R. C. Sousa and I. L. Prejbeanu, "Non-volatile magnetic random access memories (MRAM)," Comptes Rendus Physique, vol. 6, pp. 1013-1021, 2005.
    [34] J. B. Cui, R. Sordan, M. Burghard, and K. Kern, "Carbon nanotube memory devices of high charge storage stability," Applied Physics Letters, vol. 81, pp. 3260-3262, 2002.
    [35] V. Giraud, J. Cluzel, V. Sousa, A. Jacquot, A. Dauscher, B. Lenoir, H. Scherrer, and S. Romer, "Thermal characterization and analysis of phase change random access memory," Journal of Applied Physics, vol. 98, pp. 013520-7, 2005.
    [36] S. S. Kim, S. M. Jeong, K. H. Lee, Y. K. Park, Y. T. Kim, J. T. Kong, and H. L. Lee, "Simulation for Reset Operation of Ge2Sb2Te5 Phase-Change Random Access Memory," Jpn. J. Appl. Phys. , vol. 44, p. 5943, 2005.
    [37] G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, "Phase change memory technology," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 28, pp. 223-262, 2010.
    [38] W. P. Risk, C. T. Rettner, and S. Raoux, "In situ 3 omega techniques for measuring thermal conductivity of phase-change materials," Review of Scientific Instruments, vol. 79, p. 026108, 2008.
    [39] J. L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, and E. Varesi, "Thermal characterization of the SiO2-Ge2Sb2Te5 interface from room temperature up to 400 [degree]C," Journal of Applied Physics, vol. 107, pp. 044314-6, 2010.
    [40] H.-C. Chien, D.-J. Yao, and C.-T. Hsu, "Measurement and evaluation of the interfacial thermal resistance between a metal and a dielectric," Applied Physics Letters, vol. 93, pp. 231910-3, 2008.
    [41] H. C. Chien, D. J. Yao, M. J. Huang, and T. Y. Chang, "Thermal conductivity measurement and interface thermal resistance estimation using SiO2 thin film," Rev. Sci. Instrum., vol. 79, p. 054902, 2008.
    [42] M. Okuda and S. Ohkubo, "A novel method for measuring the thermal conductivity of submicrometre thick dielectric films," Thin Solid Films, vol. 213, pp. 176-181, 1992.
    [43] S. F. Diaz, J. F. Zhu, N. Shamir, and C. T. Campbell, "Pyroelectric heat detector for measuring adsorption energies on thicker single crystals," Sensors and Actuators B: Chemical, vol. 107, pp. 454-460, 2005.
    [44] M.-J. Huang, T.-Y. Chang, H.-C. Chien, W.-C. Sun, and D.-J. Yao, "The thickness difference method for measuring the thermal conductivity of thick films," Journal of Microelectromechanical Systems, Vol. 19, Issue 4, pp895-902, 2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE