簡易檢索 / 詳目顯示

研究生: 陳威羽
Yue, Chen Wei
論文名稱: 高溫純水中316L不銹鋼與52合金異材銲件之應力腐蝕龜裂行為研究
An Investigation into SCC of 316L SS - Alloy52 Dissimilar Metal Welds in Simulated BWR Environments
指導教授: 葉宗洸
口試委員: 程子萍
黃俊源
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 82
中文關鍵詞: 應力腐蝕龜裂慢應變速率拉伸清水式反應器異材金屬銲件敏化處理
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去數十年,隨著沸水式反應器(Boiling Water Reactor, BWR)運轉時間的增長,壓力邊界組件遭受沿晶應力腐蝕龜裂(Intergranular Stress Corrosion Cracking, IGSCC)的案例更是逐年增加。欲改善應力腐蝕龜裂的現象,最直接的方法便是透過前處理,降低材料敏感性、消除材料內部的殘留應力;除此之外加氫水化學(Hydrogen Water Chemistry , HWC),使水質呈還原性環境,降低組件材料的電化學腐蝕電位,也可更效防治IGSCC的發生。 該實驗主要針對316L不鏽鋼和52鎳基合金,進行異材銲接,評估銲道、熱影響區及接合面等區域之應力腐蝕現象。除此之外也評估銲件經固溶退火、敏化熱處理以及珠擊處理,對應力腐蝕龜裂防治的效益。試驗方式採用圓棒拉伸試樣,在模擬沸水式反應器之高溫純水中,進行慢應變速率拉伸(Slow Strain Rate Testing , SSRT),以評估材料之機械性質;試樣拉伸後,使用掃描式電子顯微鏡,觀察材料之斷裂面形態。透過上述種種分析,研究材料之高溫抗腐蝕性質。 結果顯示,銲件經固溶退火後,敏化程度明顯降低,斷裂面完全沒更IGSCC的現象,使得延展性大幅提升。敏化熱處理後,材料的延性、強度同時下降,且隨著敏化時間增長,材料的敏化程度隨之上升,而機械性質隨之下降,即使作了加氫水化學後,也無法完全避免IGSCC。珠擊後之銲件,使材料強度以及延展性同時上升,且更效降低IGSCC的發生。 關鍵字:輕水式反應器、異材金屬焊件、應力腐蝕龜裂、殘留應力、珠擊處理、敏化處理、加氫水化學、慢應變速率拉伸。


    摘要…………………………………………………………………………………i Abstract………………………………………………………………………………ii 致謝………………………………………………………………………………iv 目錄…………………………………………………………………………………v 圖目錄……………………………………………………………………….…viii 表目錄……………………………………………………………………….……xii 第一章 前言…………………………………………………………………………1 第二章 文獻回顧……………………………………………………………………3 2.1 異材金屬銲接………………………………………………………………3 2.1.1 異材金屬間之差異……………………………………………………3 2.1.2 異材金屬間之可銲接性………………………………………………5 2.2 應力腐蝕龜裂………………………………………………………………6 2.2.1 應力腐蝕龜裂肇因……………………………………………………8 2.2.2 應力腐蝕龜裂的型態…………………………………………………11 2.2.3 電化學腐蝕電位與應力腐蝕龜裂關係………………………………12 2.3 慢應變速率拉伸試驗(SSRT)………………………………………………14 2.4 低碳型沃斯田鐵系不銹鋼高溫純水應力腐蝕破裂型態…………………15 2.5 實驗試樣之不同前處理對應力腐蝕龜裂的影響…………………………17 2.5.1 銲後熱處理……………………………………………………………17 2.5.2 珠擊處理………………………………………………………………19 2.5.3 固溶退火………………………………………………………………19 2.6 加氫水化學(HWC)與貴重金屬添加(NMCA)特性……………………20 vi 2.6.1 加氫水化學……………………………………………………………20 2.6.2 貴重金屬添加…………………………………………………………24 第三章 理論基礎……………………………………………………………………27 3.1 沃斯田鐵系不鏽鋼的介紹…………………………………………………27 3.2應力腐蝕龜裂防治方法……………………………………………………28 3.3 伊凡斯圖 (Evan’s Diagram)………………………………………………32 3.3.1 加氫水化學 (HWC)…………………………………………………32 3.2.2 貴重金屬添加 (NMCA)……………………………………………33 第四章 實驗設備及步驟……………………………………………………………35 4.1 實驗流程及選用材料………………………………………………………35 4.2 拉伸試樣製作………………………………………………………………36 4.3 銲件之銲後熱處理、珠擊加工、固溶退火…………………………………38 4.4 試樣敏化程度測試…………………………………………………………38 4.5表面微硬度分析……………………………………………………………39 4.6殘留應力分析………………………………………………………………40 4.7 試樣預長氧化膜……………………………………………………………40 4.8 高溫高壓水循環系統………………………………………………………40 4.9冺用掃描式電子顯微儀觀察斷裂面………………………………………41 4.10 異材銲件銲道附近金相觀察……………………………………………41 第五章 結果與討論…………………………………………………………………42 5.1 微硬度分析比較……………………………………………………………42 vii 5.2 殘留應力測試結果…………………………………………………………43 5.3敏化程度測試(DL-EPR)……………………………………………………46 5.4 銲件熔接線之元素分布……………………………………………………47 5.5異材銲件慢應變速率拉伸測試……………………………………………48 5.5.1相同水化學環境………………………………………………………48 5.5.2不同水化學環境下之比較……………………………………………55 5.6 掃描式電子顯微鏡觀察破裂面……………………………………………59 5.7 光學式顯微鏡觀察銲件熔接線…………………………………………73 5.8 溶氫環境下ECP之量測……………………………………………………75 第六章 結論…………………………………………………………………………76 參考文獻……………………………………………………………………………78

    (1) 0. M. Shindo et al, “Effect of minor elements on irradiation assisted stress corrosion cracking of model austenitic stainless steels” Journal of Nuclear Materials 233-237(1996)1393-1396.
    (2) M. A. Al-Anezi, G. S. Frankel and A. K. Agrawal, “Susceptibility of Conventional Pressure Vessel Steel to Hydrogen-Induced Cracking and Stress-Oriented Hydrogen-Induced Cracking in Hydrogen Sulfide-Containing Diglycolamine Solutions” Corrosion . Vol.55 No.11 pp.1101-1109.
    (3) S. Arsene, J. B. Bai, P. Bompard, “Hydride Embrittlement and Irradiation Effects on the Hoop Mechanical Properties of Pressurized Water Reactor (PWR) and Boiling-Water Reactor (BWR) ZIRCALOY Cladding Tubes: Part I. Hydride Embrittlement in Stress-Relieved, Annealed, and Recrystallized ZIRCALOYs at 20 °C and 300 °C, ” Metallurgical and Materials Transactions A, Vol. 34, No 3, 1 March 2003, pp. 553-566.
    (4) Zhanpeng Lu, Kazuhiko Sakaguchi, Koji Negishi et al “ Quantifying the effects of straining hardening and water chemistry on crack growth rates of 316L SS welds in high temperature water” Environmental Degradation of Materials in Nuclear Power Systems Tohoku University, 6-6-01, Sendai 980-8579, Japan 2009 pp.636-645
    (5) Kang Soo Kima,∗, Ho Jin Leea, Bong Sang Leea et al “Residual stress analysis of an Overlay weld and a repair weld on the dissimilar Butt weld” Nuclear Engineering and Design 239 (2009) 2771–2777
    (6) G.H. Aydog˘du, M.K. Aydinol “Determination of susceptibility to intergranular corrosion and electrochemical reactivation behavior of AISI 316L type stainless steel ”Corrosion Science 48 (2006) 3565–3583
    (7) Sato Yasumoto, Atsumi Takeo, Shoji Tetsuo “Continuous monitoring of stress corrosion cracking growth in type 316L stainless steel weldment using induced current potential drop technique at elevated temperature” Volume: 22, Issue: 11(2008) pp. 881-886
    (8) D. D. Macdonald, M. U. MacDonald, “A coupled environment model for stress corrosion cracking in sensitized type 304 stainless steel in LWR environments,” Corrosion Science 1991, Pages 51–81
    (9) D. D. Macdonald and Mirna Urquidi-Macdonald, “Distribution functions for the breakdown of passive films” Electrochimica Acta 1986 Vol.31, No.8, pp.1079-1086,
    (10) Digby. D. Macdonald, “The point defect model for the passive state,” The Electrochemical Society. 1992 Vol. 139, No. 12 pp3434-3449
    79
    (11) Mirna Urquidi-Macdonald, D. D. Macdonald, “Theoretical analysis of the effects of alloying elements on distribution functions of passivity breakdown,” J. Electrochem. Soc., 1989 Vo;.136, No.4.
    (12) H. S. Kwon, A. Wuensche, D. D. Macdonald, “Effects of flow rate on crack growth in sensitized type 304 stainless steel in high-temperature aqueous solutions,” Corrosion, 2000, Vol. 56, No. 5, 482-491
    (13) H. Yamashitaa, S. Ookib, Y. Tanakab et al “SCC growth behavior of BWR core shroud materials” International Journal of Pressure Vessels and Piping 85, (2008), 582–592
    (14) N. Saito et al, “Variation of Slow Strain Rate Test Fracture Mode of Type 304L Stainless Steel in 288℃ Water” Corrosion (2000) Vol.56, No.1, pp.57-69
    (15) J. R. Galvele, “Effect of strain rate on stress corrosion crack velocity: difference between intergranular and transgranular cracking” Corrosion Science 41 (1999) pp.191-195.
    (16) M. Akashi, T. Kawamoto “Stress Corrosion Cracking Susceptibility of Various Stainless Steels in Oxygenated High Temperature Water” IHI Eng. Rev.11 (1978), pp.8-15
    (17) F. Umemura, M. Akashi, T. Kawamoto “Evaluation of IGSCC Susceptibility of Austenitic Stainless Steels Using Electrochemical Reactivation Method” Corrosion. Eng. 29 (1980) pp.163-169
    (18) P. L. Andresen, “Environmentally Assisted Growth Rate Response of Nonsensitized AISI 316 Grade Stainless Steels in High Temperature Water ” Corrosion 44 (1988) pp. 450.
    (19) C. D. Lundin, Welding Research Supplement 61 (2)(1982) 58.
    (20) G. Faber, T. Gooch, Welding in the World 20 (5/6) (1982) 88.
    (21) R. J. Castro, J. J. de Cadenent, “Welding Metallurgy of Stainless and Heat-Resisting Steels”, Cambridge University Press, Cambridge, 1974 p. 158.
    (22) W. H. Hearns (Ed.), Metal and Their Weldability, vol. 4, Welding Handbook, seventh ed., American Welding Society, 1982, p. 514.
    (23) M. L. Huang, L. Wang, Metallurgical and Materials Transactions A 29A (12) (1998) 3037.
    (24) An assessment of the integrity of PWR pressure vessels, Second report by a study group under the Chairmanship of Dr. W. Marshall, United Kingdom Atomic Energy Authority, March, 1982, pp. 14 (Section 5).
    (25) Xiaofei Yu, Shenhao Chen*, Ying Liu et al “A study of intergranular corrosion of austenitic stainless steel by electrochemical potentiodynamic reactivation, electron back scattering diffraction and cellular automaton” Corrosion Science 52 (2010) pp.1939–1947
    80
    (26) Han-sang Lee , Doo-soo Kim , Jine-sung Jung et al “Influence of peening on the corrosion properties of AISI 304 stainless steel” Corrosion Science 51, 2009 pp.2826–2830
    (27) V. Azar, B. Hashemi, Mahboobeh Rezaee Yazd. “The effect of shot peening on fatigue and corrosion behavior of 316L stainless steel in Ringer's solution”. Surface & Coatings Technology Volume 204 2010, pp3546-3551
    (28) E. Kikuchi, M. Itow, H. Sakemoto et al. “IGSCC Growth Rate Of Sensitized Type 304 Stainless Steel In Simulated BWR Environment” Elsevier Science Publishers B.V. 1993, pp363-369
    (29) A.P. Majidi, M.A. Streicher “Double Loop Reactivation Method for Detecting Sensitization in A1S1 304 Stainless Steels”, Corrosion 40 (1984): p. 584.
    (30) Q. Peng, T. Shoji, S. Ritter et al. “SCC Behavior In The Transition Region Of An Alloy 182-SA 508 Cl.2 Dissimilar Weld Joint Under Simulated BWR-NWC Conditions”. Environmental Degradation of Materials in Nuclear Power System 2005, pp589-599
    (31) A. L. Schaeffler, 1948. “Welding dissimilar metals with stainless electrodes”, Iron Age, 162:72, 1948, pp.73-79
    (32) Matthew J. Dejneka, Christy L. Chapman, Scott T. Misture. “Strong, Low Thermal Expansion Niobate Ceramics. ” The American Ceramic Society, 2011, Volume 94, issue 8, pp2249-2261.
    (33) Marı´a Isabel Nieto, Rafael Martı´nez, Leo Mazerolles. “Improvement in the thermal shock resistance of alumina through the addition of submicron-sized aluminium nitride particles ” Journal of the European Ceramic Society 24 (2004) pp.2293-2301.
    (34) H. T. Lee, T. Y. Tai, C. Liu. “Effect of Material Physical Properties on Residual Stress Measurement by EDM Hole-Drilling Method”. Transactions of the ASME 2011, Vol. 133, pp.021014,1-8
    (35) P. L. Andresen, “Factors Governing The Predictoin of LWR Component SCC Behavior from Laboratory Data”, Corrosion /99, paper no. 145, Houston, TX, NACE International, (1999).
    (36) P. L. Andresen, “Emerging Issues and Fundamental Processes in Environmental Cracking in Hot Water, ” Corrosion, 2008, Vol.64 No.5 pp.439-464.
    (37) W. D. Callister, Jr., John Wiley Sons “Materials Science and Engineering-An Introduction”, 5th Edition, Inc., 1999
    (38) P. Chung, “Quantitative Study of the Degree of Sensitization of Austenitic Steel by Electrochemical Measurements ” M. S. Theses , the Ohio State Uni , 1979
    (39) Martin Matula, Ludmila Hyspecka, Milan Svoboda. Intergranular corrosion of AISI 316L steel. Materials Characterization 46 (2001) pp.203– 210
    81
    (40) J.T. Busby, G.S. Was, E.A. Kenik , “Isolating the effect of radiation-induced segregation in irradiation-assisted stress corrosion cracking of austenitic stainless steels,” Journal of Nuclear Materials 302 (2002) pp.20–40
    (41) Herbert H. Uhlig & R. Winston Revie , Corrosion and Corrosion Control, Chapter 7.
    (42) R. H. Jones,Metals Handbook, Vol.13, Corrosion, 9th ed., ASM International, Metals Park, OH(1987) pp.145-162.
    (43) 王佰揚, “不同抑制性被覆條件之敏化304不繡鋼在高溫純水環境中的電化學行為研究,” 國立清華大學碩士論文.
    (44) R. L. Cowan, “The Mitigation of IGSCC of BWR Internals with Hydrogen Water Chemistry,” Water Chemistry of Nuclear Reactor Systems 7 , BNES, Bournemouth England, Oct. 13-17 , 1996 , pp. 196.
    (45) L. F. Lin, C. Y. Chao, and D. D. Macdonald, “ A Point Defect Model for Anodic Passive Films,” J. Electrochem. 1981 Soc, Vol.128, No.6.
    (46) D. D. Macdonald et al., “Theoretical Estimation of Crack Growth Rates in Type 304 Stainless Steel in BWR Coolant Environments” Corrosion, (1996) Vol. 52, pp. 768-785.
    (47) B. Stellwag, M. Lasch, and U. Staudt , “Investigation into Alternatives to Hydrogen Water Chemistry in BWR Plants” 1998, JAIF Conference, pp.186-193
    (48) R.L. Cowan, “The Mitigation of IGSCC of BWR Internals with Hydrogen Water Chemistry” Nuclear Energy, 36, No.4, 1997, pp.257.
    (49) C. C. Lin, R.L. Cowan, “Effects of hydrogen water chemistry on radiation field buildup in BWRs”, Nuclear Energy and Design 166(1996), pp.31-36
    (50) R. L. Cowan et al, GE Nuclear Energy, Vallecitos Nuclear Center, “Effects of hydrogen water chemistry on radiation field buildup in BWRs,” Nuclear Engineering and Design 166(1996), pp.31-36.
    (51) Y.J. Kim, P. L. Andresen, “ Transformation Kinetics of Oxide Formed on Noble Metal-Treated Type 304 Stainless Steel in 288°C Water”, Corrosion, (2003) Vol. 59, No.6, pp. 511-519.
    (52) S. Hettiarachchi, R.J. Law, T.P. DiaZ et al “The First In-Plant Demonstration of Noble Metal Chemical Addition Technology for IGSCC Mitigation of BWR Internal,” 8th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, (1997) August 1014, pp.535
    (53) Tsung-Kuang YEH , D. D. Macdonald, “The Efficiency of Noble Metals in Reducing the Corrosion Potential in the Primary Coolant Circuits of Boiling Water Reactors Operating under Hydrogen Water Chemistry Operation,” Journal of NUCLEAR SCIENCE and TECHNOLOGY, (2006) Vol.43, No.10,pp.1228-1236.
    (54) 鍾自強„ 焊接奧斯田鐵不锈鋼的問題及解決方法‟機械月刊,第七卷第十期,中華民國七十年10月號
    (55) F.P. Ford , P.L. Andresen, “Corrosion in Nuclear Systems : Environment Assisted Cracking in Light Water Reactors,” in Corrosion Mechanisms , eds. P. Marcus. J. Ouder (New York, NY: Marcel Dekker , 1994 ). pp.501-546
    (56) Kazushige ISHIDA et al., “Hydrazine and Hydrogen Co-injection to Mitigate Stress Corrosion Cracking of Structural Materials in Boiling Water Reactors, (II) Reactivity of Hydrazine with Oxidant in High Temperature Water under Gamma-irradiation”, Journal of NUCLEAR SCIENCE and TECHNOLOGY, (2006) Vol. 43, No. 3, pp. 242–254
    (57) 吳柏毅, “高溫純水中氧化氫於氧化鋯被覆304不鏽鋼表面之電化學行為分析,” 國立清華大學碩士論文.
    (58) 黃冠儒, “高溫純水中82合金與304低碳不銹鋼異材銲件之應力腐蝕研究,” 國立清華大學碩士論文.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE