簡易檢索 / 詳目顯示

研究生: 黃上芸
Huang, Shang-Yun
論文名稱: 觸媒式氫氣燃燒器應用於甲醇重組器的熱能管理
Catalytic Hydrogen Combustor applied to Thermal Management for Methanol Reformer
指導教授: 曾繁根
Tseng, Fan-Gang
口試委員: 潘欽
Pan, Chin
薛康琳
Hsueh, Kan-Lin
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 71
中文關鍵詞: 氫氣燃燒器燃料電池觸媒
外文關鍵詞: hydrogen combustor, fuel cell, catalyst
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 甲醇重組式的燃料電池通常含有四個部件,分別為燃料電池、蒸散器、重組器及燃燒器。在此實驗中我們將會針對燃燒器的部分進行研究。
    在本實驗中,微型晶片燃燒器使用2*2 cm矽晶片及boron float玻璃,藉由陽極接合將玻璃與晶片接合形成微型燃燒器,燃燒器使用Pt/Al2O3當作觸媒,觸媒加入DI water並使用幫浦灌入流道中。在流道部份,此實驗將會對流道進行一些處理,在灌觸媒前流道會用硫酸做親水處理,灌完後會將流道離心,比較其差異選擇塗佈較均勻的作為GC測試時所使用的流道。在GC測試部分會通入不同大小流量的氫氣及在相同的氫氣條件下,通入不同的氧氣比例,來測試此類型的反應器在何種進氣比例的情況下表現較好。最後我們將會使用有硫酸處理即有離心處理的流道來進行GC測試且進氣比例以當量為0.7的條件下表現最佳,在通入50sccm的氫氣下,氫氣轉換率達到96%,溫度達到170度。
    在銅製作流道的燃燒器部分,選用鎳金屬網當作觸媒附著的載體,並以PVA當作黏著劑,並以沾附承載的方式,將觸媒乘載在載體上,利用不同濃度的觸媒水溶液製作出不同濃度的觸媒鎳網,分別為0.5wt%、1wt%及2wt%,並藉由其組合尋找最佳搭配,發現將0.5wt%、1wt%及2wt%,依濃度由進口至出口擺放的效果最佳,可以在25分鐘內達到平衡且轉換率達98%。


    In a methanol reformer type fuel cell, there are four major components including a fuel cell, a reformer, an evaporator, and a combustor. In this study, we will focus on the combustor.
    The micro-chip combustor is composed of 2cm*2cm silicon wafer and boron float glass. The silicon wafer and glass are combined by the anode bonding to become a micro hydrogen combustor. Pt/Al2O3 is used to be the catalyst of this combustor. The catalyst is mixed with the DI water, as a kind of slurry,which pumped into the channel and the water can be removed by the hot plate. In this experiment, we study two treatments about the channel, which are hydrophilic treatment by the sulfuric acid, and centrifugal treatment, in order to find which treatment can make the catalyst well-distributed. The other test is about the GC test. In this test, we will use different flow rate of the hydrogen and fixed the flow rate of hydrogen to change the flow rate of oxygen. Finally, we use the channel treated by the hydrophilic and centrifugal in the GC test. It concludes that when equivalence ratio=0.7, the performance of the combustor will be the best. It shows that when the hydrogen flow rate=50sccm, the hydrogen conversion of the combustor reaches to 96%and the temperature of the combustor reaches to 170 degrees Celsius.
    In the part of mini scale size copper made channel, Ni foam is chosen as the support and PVA is used as binder. Catalyst is loaded by dip coating method. Through using different concentration catalyst slurry, which make the catalyst loading amount be different. 0.5wt%, 1wt% and 2wt% catalyst slurry are prepared in the experiment. The result of different concentration catalyst combination shows that the combination of 0.5wt%,1wt%, and 2wt% is the best. This combination has 98% hydrogen conversion rate and can reach the stable condition in 25 minutes.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1-1 前言 1 1-2 氫能 2 1-3 燃料電池的簡介 3 1-4 甲醇重組製氫工作原理 7 1-5 燃燒器簡介 11 1-6 研究動機 13 第二章 文獻回顧 15 2-1 整合重組器與燃燒器的例子 15 2-2 不同觸媒製作的方式,對反應器的效能影響 18 2-3燃燒器不同進氣量及進氣比例的比較 20 第三章 實驗設計與規劃 24 3-1實驗藥品 24 3-2實驗器材 24 3-3實驗儀器 25 3-4實驗步驟 28 3-5系統熱平衡之理論計算 45 第四章 實驗結果與討論 50 4-1觸媒SEM圖觀察結果 50 4-2流道離心測試及流道親水測試 50 4-3 溫度分布結果 52 4-4 燃燒器溫度分布結果 58 第五章 結論及未來工作 67 第六章 參考文獻 69

    [1]http://www.shs.edu.tw/works/essay/2008/03/2008033014421946.pdf, 2017/7/21
    [2]http://highscope.ch.ntu.edu.tw/wordpress/wpcontent/uploads/2011/08/110805112817aa64
    cd4f83420e.jpg, 2017/7/21
    [3] Clean Energy Trends 200
    [4] J. Wiley&Sons, Fuel cell systems explained, second edition, James Larm. .
    [5] L. Carrette, K. a Friedrich, and U. Stimming, “Fuel cells: principles, types, fuels, and applications.,” Chemphyschem, vol. 1, no. 4, pp. 162–93, Dec. 2000.
    [6] J. Zhang, Y. Tang, C. Song, J. Zhang, and H. Wang, “PEM fuel cell open circuit voltage (OCV) in the temperature range of 23°C to 120°C,” J. Power Sources, vol. 163, no. 1, pp. 532–537, Dec. 2006.
    [7] A. Dufour, “Fuel cells-a new contributor to stationary power,” J. Power Sources, vol. 71, no. 1–2, pp. 19–25, 1998.
    [8] S. Srinivasan and R. Mosdale, “Fuel cells: reaching the era of clean and efficient power generation in the twenty-first century,” Annu. Rev. Energy Env., vol. 24, pp. 281–328, 1999.
    [9] B. Lindström, “Development of a methanol reformer for fuel cell vehicles.” 2003.
    [10] G. Park, D. Seo, S. Park, and Y. Yoon, “Development of microchannel methanol steam reformer,” Chem. Eng. J., vol. 101, pp. 87–92, 2004.
    [11] C. Lamy, J. Léger, and S. Srinivasan, “Direct methanol fuel cells: from a twentieth century electrochemist’s dream to a twenty-first century emerging technology,” Mod. Asp. Electrochem., 2001.
    [12] A. Heinzel and V. M. Barragan, “A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells,” J. Power Sources, vol. 84, pp. 70–74, 1999.
    [13] B. Lindström and L. Pettersson, “Development of a methanol fuelled reformer for fuel cell applications,” J. Power Sources, vol. 118, pp. 71–78, 2003.
    [14] K. Jensen, “Microreaction engineering—is small better?,” Chem. Eng. Sci., vol. 56, pp. 293–303, 2001.
    [15] 江炳坤, 「燃料电池双即板流场数值模拟及膜型实验研究」, 武漢理工大
    [16] 王志煒,「甲醇於CuO/ZnO/ZrO2/Al2O3之SRM、OSRM 產氫反應研究─ZrO2的影響」,國立中央大學碩士論文 2010
    [17] Meiqiang Fan , Ya Xu , Junya Sakurai , Masahiko Demura ,Toshiyuki Hirano , Yuden Teraoka , Akitaka Yoshigoe“Spontaneous activation behavior of Ni3Sn, an intermetallic catalyst, for hydrogen production via methanol decomposition” ,Hydrogen Energy, vol. 40, Issue. 37, pp. 12663–12673, 5 Oct. 2015.
    [18] B. Tsyntsarski , I. Stoycheva , T. Tsoncheva , I. Genova , M. Dimitrov, B. Petrova , D. Paneva , Z. Cherkezova-Zheleva , T. Budinova , H. Kolev , A. Gomis-Berenguer , C.O. Ania c, I.Mitov , N. Petrov “Activated carbons from waste biomass and low rank coals as catalyst supports for hydrogen production by methanol decomposition”, Fuel processing technology, vol.137, pp.139-147, Sep 2015.
    [19] M. Turco , G. Bagnasco , U. Costantino , F. Marmottini , T. Montanari , G. Ramis , G. Busca , “Production of hydrogen from oxidative steam reforming of methanol II. Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catalysts” , Journal of Catalysis, Sep 2004
    [20] S. Velu, K. Suzuki and T. Osaki, “A comparative study of reactions of methanol over catalysts derived from NiAl- and CoAl-layered double hydroxides and their Sn-containing analogues”, Catalysis Letters, July 2000
    [21] M.Haruta., H.Sano,” Catalytic combustion of hydrogen I—Its role in hydrogen utilization system and screening of catalyst materials”, International Journal of Hydrogen Energy, 1891
    [22] Joo H.Lee., David L.Trimm,” Catalytic combustion of methane”, Fuel Processing Technology, April 1995
    [23] T. Kim, "Micro methanol reformer combined with a catalytic combustor for a PEM fuel cell," International Journal of Hydrogen Energy, vol. 34, no. 16, pp. 6790–6798, Aug. 2009.
    [24] J. Jin and S. Kwon, "Fabrication and performance test of catalytic micro-combustors as a heat source of methanol steam reformer," International Journal of Hydrogen Energy, vol. 35, no. 4, pp. 1803–1811, Feb. 2010.
    [25] W. CHOI, S. KWON, and H. DONGSHIN, "Combustion characteristics of hydrogen–air premixed gas in a sub-millimeter scale catalytic combustor," International Journal of Hydrogen Energy, vol. 33, no. 9, pp. 2400–2408, May 2008.
    [26] S.-K. Ryi, J.-S. Park, S.-H. Choi, S.-H. Cho, and S.-H. Kim, "Novel micro fuel processor for PEMFCs with heat generation by catalytic combustion," Chemical Engineering Journal, vol. 113, no. 1, pp. 47–53, Oct. 2005.

    QR CODE