簡易檢索 / 詳目顯示

研究生: 張文毅
Chang, Wen-Yi
論文名稱: Rhombic polyhedra(菱形多面體)
菱形多面體
指導教授: 全任重
Chuan, Jen-Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 14
中文關鍵詞: 菱形多面體菱形十二面體菱形二十面體
外文關鍵詞: Rhombic polyhedra, Rhombic dodecahedra, Rhombic triacontahedron
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    我們都知道四邊等長是菱形,因此菱形多面體就是由許多菱形組成的多面體。其中最常見的是菱形十二面體,以及菱形二十面體。我們在這裡分成三個要討論的主題:菱形多面體、不對稱的菱形多面體,以及動態的菱形多面體。我們都知道阿基米德多面體有十三個,Johnson多面體有九十二個,而菱形多面體卻有無限多個,因此我們無法一一做討論,只能歸類成這三主題做結合。此篇論文投影圖像皆用CABRI 3D軟體建構,在以下網頁中我們可以看到所有圖像的動態變化以及詳細製作過程。
    http://140.114.32.33/d1/g9521614/g9521614/Rhombic%20polyhedra/index.htm


    Abstract

    It's been known that rhombus means four sides are equal. Therefore, rhombic polyhedra is a polyhedra made by a lot of rhombus. The familiar graphs are rhombic dodecahedra and rhombic triacontahedron. Now we divide topic into three parts, which are rhombic polyhedra , Asymmetric rhombic polyhedra, and animation rhombic polyhedra. We know that there are 13 Archimedean solids. There are 92 Johnson solids, but rhombic polyhedra is uncountable. We can't discuss each one of rhombic polyhedra, we just can categorize and combine into three topics. All of the graphic files are constructed by CABRI 3D, we can see all dynamic variation and the detail constructive processes in the following website: http://140.114.32.33/d1/g9521614/g9521614/Rhombic%20polyhedra/index.htm

    Contents 1. Introduction 1 2. Rhombic polyhedral 2 3. Asymmetric rhombic polyhedral 7 4. Animation of rhombic polyhedral 10 5. References 14

    References
    (1) http://torina.fe.uni-lj.si/~izidor/RhombicPolyhedra/RhombicPolyhedra.html
    (2) http://mathworld.wolfram.com/RhombicDodecahedron.html
    (3) http://mathworld.wolfram.com/RhombicTriacontahedron.html
    (4) http://torina.fe.uni-lj.si/~izidor/ElekRevija2/IntrodRhombic.html
    (5) http://demonstrations.wolfram.com/FourKindsOfRhombicPolyhedra/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE