研究生: |
黃麒叡 Huang, Chi-Ruei |
---|---|
論文名稱: |
石墨烯奈米帶電晶體:製備、量測與模擬 Graphene Nanoribbon Transistors: Fabrication, Measurement and Simulation |
指導教授: |
邱博文
Chiu, Po-Wen |
口試委員: |
鄭舜仁
李奎毅 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 石墨烯 、奈米帶 、電晶體 |
外文關鍵詞: | graphene, nanoribbon, transistor |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
單層石墨具有極高的電子遷移率,但卻因為能隙為零而無法應用於現今的半導體產業,因此打開能隙的理論與方法在這幾年不斷被研究著,我們在本篇論文中利用側向局限方式打開能隙,以奈米線為蝕刻遮罩,並以可以應用於工業上的 CVD 成長多晶單層石墨,蝕刻成極窄的單層石墨奈米帶,單層石墨奈米帶的寬度可到 50nm,再製成場效應元件進行電性量測,在低溫下電流的開關比可到達 1000,並進行分析與討論多晶單層石墨奈米帶與其他團隊所做的單晶石墨奈米帶電性不同之處,並以密度泛函論模擬了扶手椅型的石墨奈米帶其能帶與穿隧係數對應能量的變化,並以此為基礎進一步使用兩種不同形狀的單層石墨結構作為單層石墨奈米帶元件的電極,比較電性模擬的結果,發現結構對於電性有十分大所影響,尤其是改變結構能造成能隙大小的改變,提出有效改善現階段製作單層石墨帶元件的結構。
[1] Bardeen, J. and Brattain, W. H. Phys. Rev. 74(2), 230 Jul (1948).
[2] Richard S. Muller, Theodore I. Kamins, M. C. Device Electronics for Inte-
grated Circuits. John Wiley & Sons, (2003).
[3] Intel. http://www.legitreviews.com/article/1082/1/ .
[4] Johannes V. Barth, G. C. and Kern, K. Nature 437, 671 (2005).
[5] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos,
S. V., Grigorieva, I. V., and Firsov, A. A. Science 306(5696), 666{669 (2004).
[6] Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T.,
Hass, J., Marchenkov, A. N., Conrad, E. H., First, P. N., and de Heer, W. A.
Science 312(5777), 1191{1196 (2006).
[7] Chen, J.-H., Jang, C., Xiao, S., Ishigami, M., and Fuhrer, M. S. Nature
Nanotechnol. 3(4), 206{209 APR (2008).
[8] Lin, Y.-M., Jenkins, K. A., Valdes-Garcia, A., Small, J. P., Farmer, D. B.,
and Avouris, P. Nano Lett. 9(1), 422{426 JAN (2009).
[9] Liao, L., Lin, Y.-C., Bao, M., Cheng, R., Bai, J., Liu, Y., Qu, Y., Wang,
K. L., Huang, Y., and Duan, X. Nature 467(7313), 305{308 SEP 16 (2010).
[10] Hass, J., de Heer, W. A., and Conrad, E. H. Journal of Physics-Condensed
Matter 20(32) AUG 13 (2008).
11] Kittel, C. Introduction to Solid State Physics. (1968).
[12] Chung, D. D. L. Journal of Materials Science 37, 1475 (2002).
[13] Lu, C.-C. Controlled Growth of Single Layer and Double Layer Graphene
Sheets on Patterned Silicon Wafers. PhD thesis, Tsing Hua university, (2009).
[14] Latil, S. and Henrard, L. Phys. Rev. Lett. 97(3) (2006).
[15] R. Satio, G. D. and Dresselhaus, M. Physical Properties of Carbon Nanotubes.
(1998).
[16] Liu, L. and Shen, Z. Appl. Phys. Lett. 95, 252104 (2009).
[17] Partoens, B. and Peeters, F. M. Phys. Rev. B 74(7) AUG (2006).
[18] Yuanbo Zhang, Yan-Wen Tan, H. L. S. and Kim, P. Nature 438, 201 (2005).
[19] Huang, P. Y., Ruiz-Vargas, C. S., van der Zande, A. M., Whitney, W. S.,
Levendorf, M. P., Kevek, J. W., Garg, S., Alden, J. S., Hustedt, C. J., Zhu,
Y., Park, J., McEuen, P. L., and Muller, D. A. Nature 469(7330), 389+ JAN
20 (2011).
[20] Fengnian Xia, Damon B. Farmer, Y.-m. L. and Avouris, P. Nano Lett. 10,
715 (2010).
[21] Kyoko Nakada, Mitsutaka Fujita, G. D. and Dresselhaus, M. S. Phys. Rev. B
54, 24 (1996).
[22] Veronica Barone, O. H. and Scuseria, G. E. Nano Lett. 6, 2748 (2006).
[23] Kausik Majumdar, Kota V. R. M. Murali, N. B. and Lin, Y.-M. Nano Lett.
10, 2857 (2010).
[24] Yousuke Kobayashi, Ken-ichi Fukui, T. E. K. K. and Kaburagi, Y. Phys. Rev.
B 71, 193406 (2005).
[25] Xiaolin Li, Xinran Wang, L. Z. S. L. and Dai, H. Science 319, 1229 (2008).
[26] Jiao, L., Wang, X., Diankov, G., Wang, H., and Dai, H. Nature Nanotechnol.
6(2), 132 FEB (2011).
[27] Han, M. Y., Oezyilmaz, B., Zhang, Y., and Kim, P. Phys. Rev. Lett. 98(20)
MAY 18 (2007).
[28] Lin, Y.-M., Perebeinos, V., Chen, Z., and Avouris, P. Phys. Rev. B 78(16)
OCT (2008).
[29] Zhihong Chen, Yu-Ming Lin, M. J. R. P. A. Physica E 40, 228 (2007).
[30] F. Sols, F. G. and Neto, A. H. C. Phys. Rev. Lett. 99, 166803 (2007).
[31] Dmitry V. Kosynkin, Amanda L. Higginbotham, A. S. J. R. L. A. D. B. K. P.
and Tour, J. M. Nature 458, 872 (2009).
[32] Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J.,
Lei, T., Kim, H. R., Song, Y. I., Kim, Y.-J., Kim, K. S., Ozyilmaz, B., Ahn,
J.-H., Hong, B. H., and Iijima, S. Nature Nanotechnol. 5(8), 574{578 (2010).
[33] P. Blakea, E. W. Hil, A. H. C. N. K. S. N. D. J. R. Y. T. J. B. and Geim,
A. K. 91, 063124 (2007).
[34] Liang, X., Giacometti, V., Ismach, A., Harteneck, B. D., Olynick, D. L., and
Cabrini, S. Appl. Phys. Lett. 96(1) (2010).
[35] J. Hass, W. A. d. H. and Conrad, E. H. J. Phys.: Condens. Matter 20, 323202
(2008).
[36] W. A. de Heer, C. Berger, X. P. N. F. E. H. C. X. L. T. L. M. S. J. H. M. L.
S. M. P. and Martinez, G. Solid State Communications 143, 92 (2007).
[37] C. Berger, Z. Song, X. L. X. W. N. B. C. N. D. M. T. L. J. H. A. N. M. E.
H. C. P. N. F. and de Heer, W. A. Science 321, 1191 (2006).
[38] X. Li, G. Zhang, X. B. X. S. X. W. E. W. and Dai, H. Nature Nanotechnol.
3, 538 (2008).
[39] G. Eda, G. F. and Chhowalla, M. Nature Nanotechnol. 3, 270 (2008).
[40] Vincent C. Tung, Matthew J. Allen, Y. Y. and Kaner, R. B. Nature Nan-
otechnol. 4, 25 (2008).
[41] May, J. W. Surf. Sci 17, 267 (1969).
[42] J. Kedzierski, PL. Hsu, A. R. J. K. P. H. P. W. and Keast, C. IEEE Electron
Device Lett. 30, 7 (2009).
[43] X. Li, W.i Cai, . J. A. S. K. J. N. D. Y. R. P. A. V. I. J. E. T. S. K. B. L. C.
and Ruo, R. S. Science 324, 1312 (2009).
[44] Novoselov, K., Jiang, D., Schedin, F., Booth, T., Khotkevich, V., Morozov,
S., and Geim, A. Proc. Natl Acad. Sci. 102(30), 10451{10453 JUL 26 (2005).
[45] Yousuke Kobayashi, K.-i. F. PHYSICAL REVIEW B 71, 193406 (2005).
[46] A. C. Ferrari, J. C. Meyer, V. S. C. C. M. L. F. M. S. P. D. J. K. S. N. S. R.
and Geim, A. K. Phy. Rev. Lett. 97, 187401 (2006.).
[47] Ihnatsenka, S. and Kirczenow, G. Phys. Rev. B 80(20) NOV (2009).
[48] Farmer, D. B., Golizadeh-Mojarad, R., Perebeinos, V., Lin, Y.-M., Tulevski,
G. S., Tsang, J. C., and Avouris, P. Nano Lett. 9(1), 388{392 JAN (2009).
[49] Melinda Y. Han, J. C. B. and Kim, P. Phys. Rev. Lett. 104, 056801 (2010).
[50] Kim, S., Nah, J., Jo, I., Shahrjerdi, D., Colombo, L., Yao, Z., Tutuc, E., and
Banerjee, S. K. Appl. Phys. Lett. 94(6) FEB 9 (2009).
[51] Li, X., Magnuson, C. W., Venugopal, A., Tromp, R. M., Hannon, J. B., Vogel,
E. M., Colombo, L., and Ruo_, R. S. Journal of the American Chemical
Society 133(9), 2816{2819 MAR 9 (2011).
[52] Yazyev, O. V. and Louie, S. G. Nature Mater. 9(10), 806{809 OCT (2010).
[53] Son, Y.-W., Cohen, M. L., and Louie, S. G. Phys. Rev. Lett. 97(21) NOV 24
(2006).
[54] Raza, H. and Kan, E. C. Phys. Rev. B 77(24) JUN (2008).
[55] Datta, S. Electronic Transport in Mesoscopic Systems. (1997).
[56] Xu, Z., Zheng, Q.-S., and Chen, G. Appl. Phys. Lett. 90(22) MAY 28 (2007).
[57] Xiong, Y.-J. and Xiong, B.-K. J. Appl. Phys. 109, 103707 (2011).
[58] Evaldsson, M., Zozoulenko, I. V., Xu, H., and Heinzel, T. Phys. Rev. B 78(16)
OCT (2008).
[59] Novoselov, K., Geim, A., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva,
I., Dubonos, S., and Firsov, A. Nature 438(7065), 197{200 NOV 10 (2005).