簡易檢索 / 詳目顯示

研究生: 王文揚
Wen-Yang Wang
論文名稱: Dipyrazolopyridine系列螢光材料之合成、性質與電激發光元件應用研究
Synthesis, Properties and Electroluminescent Device Application of Fluorescent Materials Based on Substituted Dipyrazolopyridines
指導教授: 陶雨台
Yu-Tai Tao
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 129
中文關鍵詞: 有機電激發光二極體元件
外文關鍵詞: OLED, dipyrazolopyridine
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗在dipyrazolopyridine的3號及5號碳上以苯基或4-氟苯基取代,並以含有不同芳香基的三芳胺基結構連接在此dipyrazolopyridine主體上,合成出一系列嶄新的PAP類發光材料。在以carbazolyl及N-phenyl-1-naphthylamino基團為三芳胺的取代基時,具有不錯的玻璃轉換溫度,而3, 5位置的苯基或4-氟苯基取代基則造成其放光顏色的紅位移。
    將此一系列材料做為發光層製作成三層元件,以NPB為電洞傳輸層,Alq或TPBI為電子傳輸層,元件結構為ITO / NPB(40 nm) / PAP(10 nm) / Alq or TPBI(40 nm) / LiF(1 nm) / Al(150 nm),可以得到一系列高亮度及發光效率佳的藍光或藍綠光元件。
    由於三芳胺結構具有傳輸電洞的性質,故也製作一系列雙層元件,以PAP衍生物為電洞傳輸層兼發光層,Alq或TPBI為電子傳輸層,元件結構為ITO / PAP(40 nm) / Alq or TPBI(40 nm) / LiF(1 nm) / Al(150 nm),在以不同材料做為電子傳輸層的情況下,會得到不同EL光譜的結果:以Alq為電子傳輸層元件得到了以Alq為主的放光,而在以TPBI為電子傳輸層時,得到以PAP類發光材料為主的放光。此一系列元件也有高亮度及發光效率佳的優點。


    In this work, a new series of organic light-emitting materials, derived from dipyrazolopyridine, have been synthesized. The framework of this materials is based on two parts, a dipyrazolopyridine(PAP) unit connected with a triarylamine moiety. The 3, 5 positions of PAP snbstituted with a phenyl or a 4-fluorophenyl group. For the arylamine part, three different substituents, N-phenyl-1-naphthylamino, carbazolyl and dipheylamino groups were used to form the triarylamine moiety. The enhancement of glass transition temperature has been observed on the carbazolyl and N-phenyl-1-naphthylamino group substituted derivatives. The phenyl or 4-fluorophenyl substituents at 3,5 position caused a red shift in the PL spectra.
    Three-layer devices have been fabricated by using NPB as hole-transporting layer, Alq or TPBI as electron-transporting layer and PAP dyes as light-emitting layer. The structure of device is ITO / NPB(40 nm) / PAP dyes(10 nm) / Alq or TPBI(40 nm) / LiF(1 nm) / Al(150 nm). A series of blue or greenish-blue devices were obtained with high brightness and efficiency.
    Based on the hole-transporting character of triarylamine, two-layer devices were fabricated by using PAP dyes as hole-electron transporting and light-emitting layer, Alq or TPBI as electron-transporting. With a device configuration of ITO / PAP dyes(40 nm) / Alq or TPBI(40 nm) / LiF(1 nm) / Al(150 nm). The results showed that when Alq was used as electron-transporting material, the recombination region located at the PAP dyes/Alq interface; on the other hand, holes and electrons recombined inside the PAP dyes layer when TPBI was the electron-transporting layer.

    摘要…………………………………………………………………………....I Abstract…………………………………………………………………….II 總目錄…………………………………………………………………….III 圖目錄……………………………………………………………………..V 表目錄………………………………………………………………........VII 附圖目錄………………………………………………………………..VIII 壹、序論 1 1-1 前言 1 1-2 元件發光原理及基本結構 3 1-3 元件材料 6 1-3-1 陽極(anode) 6 1-3-2 電洞注入材料(Hole Injection Materials) 6 1-3-3 電洞傳輸材料(Hole Transport Materials) 7 1-3-4 電子傳輸材料(Electron Transport Materials) 9 1-3-5 發光材料(Emitting Materials) 10 1-4 全彩化技術 14 貳、研究動機 16 參、實驗部份 17 3-1 藥品與儀器 17 3-1-1 藥品 17 3-1-2 儀器 18 3-2 合成步驟 19 3-3 UV-Vis吸收與液態螢光測量 46 3-4固態螢光與HOMO測量 46 3-5 DSC測量 46 3-6 TGA測量 47 3-7 CV測量 47 3-8 元件的製作與測量 48 肆、結果與討論 49 4-1 發光材料的合成 49 4-2 DSC及TGA之測量 53 4-3 UV-Vis吸收、螢光光譜及相對量子產率之測量 54 4-4 電化學性質測量 59 4-5 元件的製作與測量 62 4-5-1 三層元件 62 4-5-2 雙層元件 68 伍、結論 75 陸、參考資料 77

    1. M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys. 1963, 38, 2042.
    2. C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913.
    3. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539.
    4. A. Dodabalapur, B. lab., Solid State Comm. 1993, 102, 259.
    5. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151.
    6. S. M. Kelly, Flat Panel Displays Advanced Organic Materials 2000, The Royal Society of Chemistry, Cambridge.
    7. 吳忠幟, 光訊 1998, 73, 19.
    8. C. Adachi, S. Tokito, T. Tsutsui, S. Saito, J. Appl. Phys. 1998, 27, 713.
    9. C. Adachi, T. Tsutsui, S. Saito, Appl. Phys. Lett. 1990, 56, 799.
    10. H. Tokailin, M. Matsura, H. Higashi, C. Hosokawa, T. Kusumoto, SPIE Proceedings 1993, 1910, 38.
    11. T. Ishida, H. Kobayashi, Y. Nakato, J. Appl. Phys. 1993, 73, 4334.
    12. S. A. VanSlyke, C. W. Tang, L. C. Roberts, US Patent 4,720,432 1988.
    13. W.-L. Yu, J. Pei, Y. Cao, W. Huang, J. Appl. Phys. 2001, 89, 2343.
    14. A. Elschner, F. Bruder, H.-W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm, R. Wehrmann, Synth. Met. 2000, 111, 139.
    15. T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, W. J. Feast, Appl. Phys. Lett. 1999, 75, 1679.
    16. S. A. VanSlyke, C. W. Tang, US Patent 5,061,569 1991.
    17. Y. Shirota, Y. Kuwabara, H. Inada, Appl. Phys. Lett. 1994, 65, 807.
    18. D. C. Freeman, C. E. White, J. Am. Chem. Soc 1956, 78, 2678.
    19. C. W. Tang, Appl. Phys. Lett. 1985, 48, 183.
    20. C. Adachi, T. Tsutsui, S. Saito, Appl. Phys. Lett. 1990, 57, 531.
    21. C. W. Tang, S. A. VanSlyke, C. H. Chen, J. Appl. Phys. 1989, 65, 3610.
    22. D. E. Rivett, J. Roscrear, J. F. K. Wilshire, Aust. J. Chem. 1979, 32, 1601.
    23. T. C. Wong, J. Kovac, C. S. Lee, L. S. Hung, S. T. Lee, Chem. Phys. Lett. 2001, 13, 2441.
    24. C. W. Ko, Y. T. Tao, A. Danel, L. Krzeminska, P. Tomasik, Chem. Mater. 2001, 13, 2441.
    25. M. A. Baldo, D. F. O'Brien, M. E. Thompson, S. R. Forrest, Phys. Rev. B 1999, 60, 14422.
    26. C. H. Chen, J. Shi, K. P. Klubek, US Patent 5,908,581 1999.
    27. C. W. Tang, C. H. Chen, J. Shi, K. P. Klubek, US Patent 6,020,078 2000.
    28. J. Shi, C. W. Tang, C. H. Chen, US Patent 5,935,721 1999.
    29. D. F. O'Brien, M. A. Baldo, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 1999, 74, 442.
    30. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 1999, 75, 4.
    31. M. A. Baldo, M. E. Thompson, S. R. Forrest, Nature 2000, 403, 750.
    32. C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, R. C. Kwong, J. Am. Chem. Soc 2001, 78, 1622.
    33. R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Weong, J. J. Brown, S. Garon, M. E. Thompson, Appl. Phys. Lett. 2003, 82, 2422.
    34. B. W. D'Andrade, M. E. Thompson, S. R. Forrest, Adv. Mater. 2002, 14, 147.
    35. R. S. Deshpande, V. Bilovic, S. R. Forrest, Appl. Phys. Lett. 1999, 75, 888.
    36. M. Strukelj, R. H. Jordan, A. Dodabalapur, J. Am. Chem. Soc 1996, 118, 1213.
    37. J. Kido, M. Kimura, K. Nagai, Science 1995, 267, 1332.
    38. C. Hosokawa, Synth. Met. 1997, 35, 3.
    39. M. Arai, K. Nakaya, O. Onitsuka, T. Inoue, M. Codama, Synth. Met. 1997, 35, 21.
    40. Y. T. Tao, C. H. Chuen, C. W. Ko, J. W. Peng, Chem. Mater. 2002, 14, 4256.
    41. Y. Yamaguchi, I. Katsuyama, K. Fuabiki, M. Matsui, and K. Shibata, J. Heterocyclic Chem. 1998, 35, 805.
    42. A. Ganesan, D. H. Heathcock, J. Org. Chem. 1993, 58, 6155.
    43. A. Puchala, D. Rasala, E. Kolehmainen, OPPIBRIEFS 1997, 29, 226.
    44. B. E. Koene, D. E. Loy, M. E. Thompson, Chem. Mater. 1998, 10, 2235.
    45. Y. Hamada, H. Kanno, T. Tsuyoshi, H Takahashi, T. Usuki, Appl. Phys. Lett. 1999, 75, 1682.
    46. G. JonesⅡ, W. R. Jackson, C. Y. Choi, W. R. Bergmark, J. Phys. Chem 1985, 89, 294.
    47. S. E. Shaheen, G. E. Jabbour, M. M. Morell, Y. Kawabe, B. Kipplen, N. Peyghambarian, J. Appl. Phys. 1998, 84, 2324.
    48. C. Ganzorig, K. Suga, M. Fujihira, Mater. Sci. Eng. 2001, B85, 140.
    49. R. Schlaf, B. A. Parkinson, P. E. Lee, K. W. Nebesny, G. Jabbour, B. Kippelen, N. Peyghambarian, N. R. Armstrong, J. Appl. Phys. 1998, 84, 6729.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE