研究生: |
王育倫 Wang, Yu-Lun |
---|---|
論文名稱: |
Development of Trans-synaptic Probes- A Potential Approach for Detecting Both Synaptic Proximity and Function 神經突觸探針- 同時偵測神經突觸間距及功能的新方法 |
指導教授: |
桑自剛
Sang, Tzu-Kang |
口試委員: |
桑自剛
張慧雲 陳盛良 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 43 |
中文關鍵詞: | 神經突觸 、突觸間距 、突觸功能 、探針 、綠色螢光蛋白 、重組 |
外文關鍵詞: | trans-synaptic, synaptotagmin, neuroligin, neurexin, GRASP, co-culture |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在神經系統中,突觸是位於軸突神經細胞末梢,用來將神經傳導物質從一個神經細胞傳遞到下一個神經細胞的地方。透過神經傳導物質由前突觸神經細胞釋放到突觸間隙,然後被後突觸神經細胞上的接受器所接收的過程,可以引發動作電位讓神經訊號傳遞到下一個神經元。這個釋放的過程主要透過突觸小泡的循環及一群SNARE蛋白來調控,其中Synaptotagmin I 是一種主要分布在突觸小泡上的v-SNARE蛋白,在它的羧基端由兩個可以感測鈣離子的C2 區域所構成。當接受到鈣離子的刺激,Synaptotagmin I C2 區域的兩個環狀結構 (L1及L3)會穿透細胞膜的磷脂雙層而幫助突觸小泡的融合。根據這點,我們利用蛋白質融合技術結合綠色螢光蛋白片段重組的概念製作出一對位於神經突觸兩端的探針,期望能在活體動物的腦中直接偵測神經傳導物質釋放的過程。在現階段的細胞實驗當中,我們將兩支探針分別表現在神經細胞及非神經細胞當中,然後在一起培養的狀態下發現綠色螢光蛋白片段可以進行重組;同時也在果蠅的神經系統中測試這組探針的可行性,這將會是一個可以同時偵測神經突觸的間距及功能的新方法。
In the nervous system, synapses are cellular junctions at axonal terminal that permit neurotransmitters to pass from a neuron to another. Neurotransmitters from presynaptic neurons are released to the synaptic cleft, and then accepted by receptors embedded on the postsynaptic neuron surface. Through this process, an evoked action potential relays the signal to the next cell. To empty the neurotransmitters in the synaptic vesicles, a group of SNARE proteins are required. Synaptotagmin I is a vesicular SNARE protein, which is mainly located on synaptic vesicles. It contains two independent C2-type Ca2+ sensing domains (called C2A and C2B) in the c-terminal. It has been reported that, in response to Ca2+, Synaptotagmin I utilizes two flexible loops (L1 and L3) of the C2 domain to partially penetrate the hydrophobic core of the lipid bilayer, thus intiate vesicle fusion. According to this finding, we are developing synaptotagmin I-based synaptic probe in conjuction with reconstitutive GFP, and aim to decode the process of neurotransimission in a visible means in living brain. In our pilot study, we expressed pre- and post-synaptic probes seperatly in two types of cells and found that the splitted GFP can be reconstituted in the co-culture system. We are currently testing these probes in the context of neurotransmission and in the Drosophila nervous system. The success of this approach may provide a novel way to detect both transynaptic proximity and function in vivo.
1. Arenkiel, B. R. and M. D. Ehlers (2009). "Molecular genetics and imaging technologies for circuit-based neuroanatomy." Nature 461(7266): 900-907.
2. Baird, G. S., D. A. Zacharias, et al. (1999). "Circular permutation and receptor insertion within green fluorescent proteins." Proc Natl Acad Sci U S A 96(20): 11241-11246.
3. Boucard, A. A., A. A. Chubykin, et al. (2005). "A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neurexins." Neuron 48(2): 229-236.
4. Chapman, E. R. (2002). "Synaptotagmin: a Ca2+ sensor that triggers exocytosis?" Nat Rev Mol Cell Biol 3(7): 498-508.
5. Chen, K., E. O. Gracheva, et al. (2010). "Neurexin in embryonic Drosophila neuromuscular junctions." PLoS One 5(6): e11115.
6. Choi, U. B., P. Strop, et al. (2010). "Single-molecule FRET-derived model of the synaptotagmin 1-SNARE fusion complex." Nat Struct Mol Biol 17(3): 318-324.
7. Craig, A. M. and Y. Kang (2007). "Neurexin-neuroligin signaling in synapse development." Curr Opin Neurobiol 17(1): 43-52.
8. Di Giovanni, J., C. Iborra, et al. (2010). "Calcium-dependent regulation of SNARE-mediated membrane fusion by calmodulin." J Biol Chem 285(31): 23665-23675.
9. Diril, M. K., M. Wienisch, et al. (2006). "Stonin 2 is an AP-2-dependent endocytic sorting adaptor for synaptotagmin internalization and recycling." Dev Cell 10(2): 233-244.
10. Feinberg, E. H., M. K. Vanhoven, et al. (2008). "GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems." Neuron 57(3): 353-363.
11. Fernandez, I., D. Arac, et al. (2001). "Three-dimensional structure of the synaptotagmin 1 C2B-domain: synaptotagmin 1 as a phospholipid binding machine." Neuron 32(6): 1057-1069.
12. Fernandez-Chacon, R., A. Konigstorfer, et al. (2001). "Synaptotagmin I functions as a calcium regulator of release probability." Nature 410(6824): 41-49.
13. Giepmans, B. N., S. R. Adams, et al. (2006). "The fluorescent toolbox for assessing protein location and function." Science 312(5771): 217-224.
14. Hui, E., C. P. Johnson, et al. (2009). "Synaptotagmin-mediated bending of the target membrane is a critical step in Ca2+-regulated fusion." Cell 138(4): 709-721.
15. Ichtchenko, K., T. Nguyen, et al. (1996). "Structures, alternative splicing, and neurexin binding of multiple neuroligins." J Biol Chem 271(5): 2676-2682.
16. Jarousse, N. and R. B. Kelly (2001). "The AP2 binding site of synaptotagmin 1 is not an internalization signal but a regulator of endocytosis." J Cell Biol 154(4): 857-866.
17. Jarousse, N., J. D. Wilson, et al. (2003). "Endocytosis of synaptotagmin 1 is mediated by a novel, tryptophan-containing motif." Traffic 4(7): 468-478.
18. Jung, N. and V. Haucke (2007). "Clathrin-mediated endocytosis at synapses." Traffic 8(9): 1129-1136.
19. Jung, N., M. Wienisch, et al. (2007). "Molecular basis of synaptic vesicle cargo recognition by the endocytic sorting adaptor stonin 2." J Cell Biol 179(7): 1497-1510.
20. Khanna, R., Q. Li, et al. (2006). "'Fractional recovery' analysis of a presynaptic synaptotagmin 1-anchored endocytic protein complex." PLoS One 1: e67.
21. Koehnke, J., X. Jin, et al. (2008). "Crystal structures of beta-neurexin 1 and beta-neurexin 2 ectodomains and dynamics of splice insertion sequence 4." Structure 16(3): 410-421.
22. Koh, T. W. and H. J. Bellen (2003). "Synaptotagmin I, a Ca2+ sensor for neurotransmitter release." Trends Neurosci 26(8): 413-422.
23. Lee, H. K., Y. Yang, et al. (2010). "Dynamic Ca2+-dependent stimulation of vesicle fusion by membrane-anchored synaptotagmin 1." Science 328(5979): 760-763.
24. Levinson, J. N. and A. El-Husseini (2005). "Building excitatory and inhibitory synapses: balancing neuroligin partnerships." Neuron 48(2): 171-174.
25. Li, J., J. Ashley, et al. (2007). "Crucial role of Drosophila neurexin in proper active zone apposition to postsynaptic densities, synaptic growth, and synaptic transmission." Neuron 55(5): 741-755.
26. Lise, M. F. and A. El-Husseini (2006). "The neuroligin and neurexin families: from structure to function at the synapse." Cell Mol Life Sci 63(16): 1833-1849.
27. Littleton, J. T., H. J. Bellen, et al. (1993). "Expression of synaptotagmin in Drosophila reveals transport and localization of synaptic vesicles to the synapse." Development 118(4): 1077-1088.
28. Maritzen, T., J. Podufall, et al. (2010). "Stonins--specialized adaptors for synaptic vesicle recycling and beyond?" Traffic 11(1): 8-15.
29. Martens, S. (2010). "Role of C2 domain proteins during synaptic vesicle exocytosis." Biochem Soc Trans 38(Pt 1): 213-216.
30. Martina, J. A., C. J. Bonangelino, et al. (2001). "Stonin 2: an adaptor-like protein that interacts with components of the endocytic machinery." J Cell Biol 153(5): 1111-1120.
31. McMahon, H. T., M. M. Kozlov, et al. (2010). "Membrane curvature in synaptic vesicle fusion and beyond." Cell 140(5): 601-605.
32. Missler, M., W. Zhang, et al. (2003). "Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis." Nature 423(6943): 939-948.
33. Mukherjee, K., M. Sharma, et al. (2008). "CASK Functions as a Mg2+-independent neurexin kinase." Cell 133(2): 328-339.
34. Nam, C. I. and L. Chen (2005). "Postsynaptic assembly induced by neurexin-neuroligin interaction and neurotransmitter." Proc Natl Acad Sci U S A 102(17): 6137-6142.
35. Nguyen, T. and T. C. Sudhof (1997). "Binding properties of neuroligin 1 and neurexin 1beta reveal function as heterophilic cell adhesion molecules." J Biol Chem 272(41): 26032-26039.
36. O'Connor, V. and A. G. Lee (2002). "Synaptic vesicle fusion and synaptotagmin: 2B or not 2B?" Nat Neurosci 5(9): 823-824.
37. Opazo, F., A. Punge, et al. (2010). "Limited intermixing of synaptic vesicle components upon vesicle recycling." Traffic 11(6): 800-812.
38. Poskanzer, K. E., R. D. Fetter, et al. (2006). "Discrete residues in the C2b domain of synaptotagmin I independently specify endocytic rate and synaptic vesicle size." Neuron 50(1): 49-62.
39. Poskanzer, K. E., K. W. Marek, et al. (2003). "Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo." Nature 426(6966): 559-563.
40. Potter, C. J., B. Tasic, et al. (2010). "The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis." Cell 141(3): 536-548.
41. Prange, O., T. P. Wong, et al. (2004). "A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin." Proc Natl Acad Sci U S A 101(38): 13915-13920.
42. Radhakrishnan, A., A. Stein, et al. (2009). "The Ca2+ affinity of synaptotagmin 1 is markedly increased by a specific interaction of its C2B domain with phosphatidylinositol 4,5-bisphosphate." J Biol Chem 284(38): 25749-25760.
43. Richmond, J. E. and K. S. Broadie (2002). "The synaptic vesicle cycle: exocytosis and endocytosis in Drosophila and C. elegans." Curr Opin Neurobiol 12(5): 499-507.
44. Rizo, J. (2010). "Synaptotagmin-SNARE coupling enlightened." Nat Struct Mol Biol 17(3): 260-262.
45. Rizo, J. and T. C. Sudhof (2002). "Snares and Munc18 in synaptic vesicle fusion." Nat Rev Neurosci 3(8): 641-653.
46. Rohrbough, J. and K. Broadie (2005). "Lipid regulation of the synaptic vesicle cycle." Nat Rev Neurosci 6(2): 139-150.
47. Rowen, L., J. Young, et al. (2002). "Analysis of the human neurexin genes: alternative splicing and the generation of protein diversity." Genomics 79(4): 587-597.
48. Scanziani, M. and M. Hausser (2009). "Electrophysiology in the age of light." Nature 461(7266): 930-939.
49. Scholl, F. G. and P. Scheiffele (2003). "Making connections: cholinesterase-domain proteins in the CNS." Trends Neurosci 26(11): 618-624.
50. Shaner, N. C., P. A. Steinbach, et al. (2005). "A guide to choosing fluorescent proteins." Nat Methods 2(12): 905-909.
51. Smith, K. R., K. McAinsh, et al. (2008). "Regulation of inhibitory synaptic transmission by a conserved atypical interaction of GABA(A) receptor beta- and gamma-subunits with the clathrin AP2 adaptor." Neuropharmacology 55(5): 844-850.
52. Stein, A., A. Radhakrishnan, et al. (2007). "Synaptotagmin activates membrane fusion through a Ca2+-dependent trans interaction with phospholipids." Nat Struct Mol Biol 14(10): 904-911.
53. Sudhof, T. C. (2008). "Neuroligins and neurexins link synaptic function to cognitive disease." Nature 455(7215): 903-911.
54. Sudhof, T. C. (2008). "Neuroligins and neurexins link synaptic function to cognitive disease." Nature 455(7215): 903-911.
55. Traub, L. M. (2005). "Common principles in clathrin-mediated sorting at the Golgi and the plasma membrane." Biochim Biophys Acta 1744(3): 415-437.
56. Walther, K., M. K. Diril, et al. (2004). "Functional dissection of the interactions of stonin 2 with the adaptor complex AP-2 and synaptotagmin." Proc Natl Acad Sci U S A 101(4): 964-969.
57. Xu, J., T. Mashimo, et al. (2007). "Synaptotagmin-1, -2, and -9: Ca2+ sensors for fast release that specify distinct presynaptic properties in subsets of neurons." Neuron 54(4): 567-581.
58. Xu, J., Z. P. Pang, et al. (2009). "Synaptotagmin-1 functions as a Ca2+ sensor for spontaneous release." Nat Neurosci 12(6): 759-766.
59. Yamada, M., T. Hashimoto, et al. (2007). "Synaptic adhesion molecule OBCAM; synaptogenesis and dynamic internalization." Brain Res 1165: 5-14.
60. Yoshihara, M., B. Adolfsen, et al. (2003). "Is synaptotagmin the calcium sensor?" Curr Opin Neurobiol 13(3): 315-323.
61. Zeng, X., M. Sun, et al. (2007). "Neurexin-1 is required for synapse formation and larvae associative learning in Drosophila." FEBS Lett 581(13): 2509-2516.
62. Zhang, J., R. E. Campbell, et al. (2002). "Creating new fluorescent probes for cell biology." Nat Rev Mol Cell Biol 3(12): 906-918.