簡易檢索 / 詳目顯示

研究生: 蔡侑伶
Yuling Tsai
論文名稱: Negative Differential Conductivity of Two Dimensional Electron Gas System at High Magnetic Field
二維電子系統強磁場下負電導之研究
指導教授: 陳正中
Jeng-Chung Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 62
中文關鍵詞: 負微分電導
外文關鍵詞: negative differential conductivity, two dimensional electron gas system
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A new kind of nonlinear effect is observed a two-dimensional electron gas system at high magnetic field. Understanding of negative differential conductivity (NDC) in bulk semiconductors in the absence of magnetic fields has been established since nearly four decades ago [1]. It is well-known that a semiconductor exhibiting NDC is inherently unstable and could be characterized by a multivalued dependence in the current density-electric filed (J-E) relation.

    The instability of the system with NDC in the presence of magnetic field, however, is less theoretically studied. Kurosawa et al.[2] suggested that the macroscopic instability due to NDC is much more easily induced to break the homogeneous states under a strong magnetic field. According to Ref [2], the criterion of NDC is given as ΔJ •ΔE <0. As the criterion is fulfilled, the additional current ΔJ moves inwardly and hence the space charge sheet start growing. Since the Hall angle ψ is almost near π/2 in the presence of the strong magnetic field, even a week nonlinear effect could cause ψ > π/2 and the current instability would emerge.

    Theoretically the same conclusions could be extended to apply in two dimensional electron gas system (2DEG ) case. The nonlinear transport is characterized by the current driven instability at high lattice temperatures. The threshold of current instability is found to be associated with the occurrence of negative differential conductivity. The origin of the nonlinearities is attributed to the suppression of the scattering rate with increasing electric field because of the peculiar shape of the density of states in quantum Hall effect. By comparing the data with the existing theories we discuss the nature of current instability and bode a phase diagram for the future studies.


    Acknowledgment Abstract 1 Introduction..........................................................................................................1 2 Negative differential conductivity (NDC).....................................................3 2.1 Bulk negative differential conductivity without magnetic field………............3 2.2 Bulk negative differential conductivity in magnetic field…….........…………6 3 Transport in nanostructure...........................................................................10 3.1 Tow-dimensional electron gas system (2DEG)................................................10 3.1.1 Metal-oxide-semiconductor field-effect transistor (Si-MOSFET)…...10 3.1.2 Modulation-doped field-effect transistor (MODFET)………………..11 3.2 Landau level………………………………………………………………….15 3.3 Density of state………………………………………………………………20 3.4 Shubnikov-De Hass oscillation………………………………………………23 3.4.1 Magnetoresistance in low magnetic field………………………….....23 3.4.2 Magnetoresistance in high magnetic field…………………………....25 3.5 Integer Quantum Hall effect……………………………………………….…26 3.6 Negative differential conductivity in 2DEG system…………………………30 4 Experimental methods ……………………………………………………...32 4.1 Device fabrication……………………………………………………………32 4.1.1 Instruments and chemical……………………………………………32 4.1.2 Photolithography…………………………………………………….34 4.1.3 Thermal evaporation…………………………………………………35 4.1.4 Experimental recipes and parameters…………………………..……36 4.2 He4 cryostat system…………………...…………………………………..…40 4.3 Measurement………..………………………………………………….……42 5 Experimental results………………….……………………………..……45 5.1 Integer Quantum Hall effect……………………………………………...….45 5.2 Current-voltage relation ……………………………………………………..46 6 Discussions………………………………………………………...…51 6.1 Demonstration of negative differential conductivity……………………...…51 6.2 Physical consequence of negative differential conductivity………………... 56 6.3 Physical mechanism of negative differential conductivity………………..…58 7 Conclusion and Prospects…………………………………………………..61 References

    [1] S. M. Sze, Physics of Semiconductor Device, John Wiley & Sons (1981).
    [2] Tatsumi Kurosawa, Hajime Maeda and Hidehiko Sugimoto, J. Phys. Soc. Japan. 36,491 (1974).
    [3] Y. Kawano and S. Komiyama, Phys. Rev. B. 61,2931(2000).
    [4] T. Takamasu, S. Komiyama, S. Hiyamizu and S. Sasa, Proceedings of the 18th International Conference on the Physics of Semiconductor, edited by O. Engstorm (World Scientific, Singapore, 1986), p.433.
    [5] A. V. Andreev, I. L. Aleiner and A. J. Millis, Phys. Rev. Lett. 91, 056803(2003).
    [6] P. W. Anderson and W. F. Brinkman, e-print condmat/ 0302129.
    [7] F. S. Bergeret, B. Huckestein and A. F. Volkov, Phys.Rev. B. 67,241303 (2003).
    [8] Junren Shi and X.C. Xie, Phys. Rev. Lett. 91,086801(2003).
    [9] A. C. Durst, S. Sachdev, N. Read, and S. M. Girvin,Phys. Rev. Lett. 91, 086803(2003).
    [10] Jing-qiao Zhang, Sergey Vitkalov, A. A. Bykov, A. K. Kalagin and A. K. Bakalov, Phys. Rev. B. 75, 81305(2007).
    [11] Ando T, Fowler A B and Stern F 1982 Electronic properties of two-dimensional systems Rev. Mod. Phys. 54
    437–672
    [12] B Jeckelmann , B Jeanneret, The quantum Hall effect as an electrical resistance
    Standard, Rep. Prog. Phys. 64 (2001) 1603–1655
    [13] Englert T and von Klitzing K 1978 Analysis of ρxx minima in surface quantum oscillations on (100) n-type silicon inversion layers Surf. Sci. 73 70–80
    [14] von Klitzing K, Dorda G and PepperM1980 New method for high-accuracy determination of the fine structure constant based on quantized Hall resistance Phys. Rev. Lett. 45 494–7
    [15] Anderson, R. L., (1960). Germanium-gallium arsenide heterojunction, IBM J. Res. Dev. 4(3), pp. 283-287
    [16] Borisenko, V. E. and Ossicini, S. (2004). What is What in the Nanoworld: A Handbook on Nanoscience and Nanotechnology. Germany: Wiley-VCH.
    [17] John H. Davies, The Physics of Low-dimensional Semiconductors, Cambridge University Press, New York (1998).
    [18] Supriyo Datta, vies, Electron Transport in Mesoscopic Systems, Cambridge University Press, New York (1995).
    [19] Anthony kent, Experimental Low-Temperature Physics, The Macmillan press LTD(1993)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE