研究生: |
林千妤 Lin, Chien-Yu |
---|---|
論文名稱: |
使用 LPCVD 方法沉積 SiN 在矽懸臂基板量測其機械損耗,並開發用於量測機械損耗的 GNS Measurements of mechanical loss in SiN deposited on a cantilever using the low-pressure chemical vapor deposition (LPCVD) method and developing a Gentle Nodal Suspension (GNS) for measuring mechanical loss. |
指導教授: |
趙煦
Chao, Shiuh 井上優貴 Inoue, Yuki |
口試委員: |
王子敬
Wong, Tsz-King Henry 章文箴 Chang, Wen-Chen |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2023 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 70 |
中文關鍵詞: | 機械損耗 、重力波 、鍍膜 、矽懸臂 |
外文關鍵詞: | mechanicall loss, cantiliver, gravatational wave |
相關次數: | 點閱:47 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
LIGO(Laser Interferometer Gravitational-Wave Observatory)是一個先進的科學觀測站,用於探測重力波。下一代重力波探測器將在低溫下量測,以減少背景熱雜訊。干涉儀兩臂共振腔內的高反射鏡薄膜扮演著關鍵的角色,它可增加光束的傳輸效率。薄膜的性能顯著影響LIGO儀器的靈敏度和精度。
然而,薄膜的設計和應用也面臨了許多挑戰。首先,這些薄膜必須具有高反射率和低吸收率,以及低機械損耗,以減少能量損失。在之前的實驗中,我們透過改變SiH2Cl2/NH3氣體流量比,並使用在台灣半導體研究中心的LPCVD(Low-Pressure Chemical Vapor Deposition)調變不同的退火溫度來優化SiN薄膜。令人鼓舞的是,SiN在低溫下沒有機械損耗的峰值,這與LIGO目前使用的Ta2O5相比有顯著的進步。此外,我們透過使用氣體流量比為1和退火1.5小時的比例鍍製SiN,在雷射波長1550nm下測得了1.3×10-6 [2]的吸收值,這是使用LPCVD方法獲得的最佳吸收值。
因此,本研究旨在測量SiN薄膜在低溫下的機械損耗,並確定它們是否同時具有低光吸收和低機械損耗特性。此外,我們正在開發一個用於機械損耗測量的GNS(Gentle Nodule Suspension) 系統。相比之前的低溫系統,GNS具有更多優勢,因為相較於原本的低溫系統它減少了夾持面積,並且簡化了樣品製作過程,顯著的減少了額外的損耗並提高了測量精確度。因此,我將講述GNS開發的最新進展以及探討開發過程中遇到的雜訊問題,期望能夠成功地開發GNS系統。
LIGO (Laser Interferometer Gravitational-Wave Observatory) is an advanced scientific observatory dedicated to detecting gravitational waves. The upcoming generation of gravitational wave detectors, known as LIGO Voyager, will operate at low temperatures to minimize background thermal noise. High reflectivity mirror coatings are pivotal components within the resonant cavities in an interferometer, enhancing the transmission efficiency of the laser beams. The effectiveness of these coatings has a substantial impact on the sensitivity and precision of the LIGO instruments.
However, designing and applying these coatings also presents several challenges. Firstly, the coatings must exhibit high reflectivity, low absorption, and minimal mechanical loss to minimize energy dissipation. In previous experiments, we optimized SiN (Silicon Nitride) coatings by modulating the SiH2Cl2/NH3 gas flow ratio and utilizing Low-Pressure Chemical Vapor Deposition (LPCVD) at the Taiwan Semiconductor Research Institute with varying annealing temperatures.
Encouragingly, SiN exhibited no mechanical loss peaks at low temperatures, representing a significant improvement over the current Ta2O5 coatings used in LIGO. Furthermore, we achieved the best absorption value of 1.3×10-6 [2] at a laser wavelength of 1550 nm using LPCVD, with a gas flow ratio of 1 and an annealing time of 1.5 hours.
Therefore, this study aims to measure the mechanical loss of SiN coatings at low temperatures and determine whether they exhibit both low optical absorption and minimal mechanical loss characteristics. Furthermore, we are in the process of developing a Gentle Nodule Suspension (GNS) system for conducting mechanical loss measurements. In comparison to the previous low-temperature system, the GNS system offers several advantages, including a reduced clamping area and simplified sample preparation. These advancements significantly minimize additional losses and enhance measurement precision.
Thus, I will present the latest developments in GNS development and discuss the noise issues encountered during the development process, hoping to successfully realize the GNS system.
[1] Gupta, Shefali, et al. "Optimizing the performance of MEMS electrostatic comb drive actuator with different flexure springs." Proceedings of the 2012 COMSOL conference. Bangalore. 2012.
[2] Master thesis, Yin-Jie Yang, Institute of Photonics Technologies, National Tsing Hua University, 2022.
[3] Master thesis, Dong-Lin Cai, Institute of Photonics Technologies, National Tsing Hua University, 2021.
[4] Master thesis, Zheng Jyun, Institute of Photonics Technologies, National Tsing Hua University, 2016.
[5] https://tse3.mm.bing.net/th?id=OIP.kDu2I3G8CaUET2wsgdHGfQAAAA&pid=Api&P=0&h=180
[6] B. P. Abbott et al., Observation of Gravitational Waves from a Binary Black Hole Merger, PRL, 116, 061102 (2016).
[7] LIGO Scientific Collaboration, Instrument Science White Paper 2021, LIGO Document: LIGO-T2100298-v2 (2021).
[8] Master thesis, Zheng Jyun, Institute of Photonics Technologies, National Tsing Hua University, 2022.
[9] H. B. Callen, T. A. Weltont. Irreversibility and generalized noise. Phys. Rev., Jul. 83, 34-40 (1951).
[10] Master thesis, Cai-Ling Luo, Institute of Photonics Technologies, National Tsing Hua University, 2022.
[11] L. D. Landau and E. M. Lifshitz, in Theory of Elasticity 3rd ed. (Oxford, Pergamon Press, 1986), Ch.1
[12] https://reurl.cc/qLa94n
[13] https://reurl.cc/ZWEar3
[14] https://reurl.cc/XE9Kya
[15] https://reurl.cc/b9yKgr
[16] https://www.cosmotec-co.jp/products/detail/78/product_id/870
[17] https://reurl.cc/11pNVY
[18] Hirose, Eiichi, et al. "Mechanical loss of a multilayer tantala/silica coating on a sapphire disk at cryogenic temperatures: Toward the KAGRA gravitational wave detector." Physical Review D 90.10 (2014): 102004.
[19] Vajente, Gabriele, et al. "Amorphous oxides to improve the coatings of future gravitational wave detectors." Bulletin of the American Physical Society 65 (2020).
[20] https://dcc.ligo.org/DocDB/0178/G2101731/001/CryoMulti_material_Voyager2021.pdf
[21] https://tds.virgo-gw.eu/?call_file=ET-0106C-10.pdf .
[22] Utina, A., et al. "ETpathfinder: a cryogenic testbed for interferometric gravitational-wave detectors." Classical and quantum gravity 39.21 (2022): 215008.
[23] Steinlechner, J., et al. "Silicon-based optical mirror coatings for ultrahigh precision metrology and sensing." Physical Review Letters 120.26 (2018): 263602.
[24] Collaboration, T. LIGO Scientific, and J. E. A. Aasi. "Advanced ligo." Class. Quantum Gravity 32.7 (2015): 074001.
[25] https://dcc.ligo.org/DocDB/0184/G2201650/001/LVK_CoatingsPlenary.pdf
[26]https://dcc.ligo.org/DocDB/0178/M2100169/002/Test%20Mass%20Coating%20Report%20M2100169-v2.pdf
[27] KAGRA Collaboration, “Overview of KAGRA: Detector design and construction history”, Phys. 2020, 05A101 (24 pages)
[28] 沼田健司. 鏡材料の機械損失に関する研究. Diss. 修士論文, 2000.
[29] 森有紀乃. 富山大学理工学教育学部物理学専攻 レーザー物理学研究室. 低温重力波望遠鏡 KAGRA のための鏡の反射膜の機械的散逸測定. 修士論文,2021
[30] https://cn.comsol.com/multiphysics/finite-element-method
[31] https://reurl.cc/eDKX3K
[32] https://reurl.cc/GA2exy
[33]https://www.hamamatsu.com/us/en/product/optical-sensors/photodiodes/si-photodiode-array/segmented-type-si-photodiode/S5981.html
[34] Adhikari, Rana X., et al. "A cryogenic silicon interferometer for gravitational-wave detection." Classical and Quantum Gravity 37.16 (2020): 165003.
[35] https://dcc.ligo.org/LIGO-G1802205