簡易檢索 / 詳目顯示

研究生: 陳彥博
Chen, Yen-Po
論文名稱: 探討組蛋白甲基化因子Ehmt2和組蛋白乙醯化因子對神經幹細胞分化的影響
Inhibition of Ehmt2 promotes histone deacetylation-mediated neuronal differentiation of neural stem cells
指導教授: 紀雅惠
Chi, Ya-Hui
張壯榮
Chang, Chuang-Rung
口試委員: 邱英明
張壯榮
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
中文關鍵詞: 組蛋白修飾甲基化神經幹細胞
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表觀遺傳調控 (Epigenetic modification)可經由修飾組蛋白上的胺基酸來影響基因轉錄的活性,常見的修飾包含了DNA甲基化(DNA methylation)、組蛋白修飾(Histone modification)以及染色質的重塑(Chromatin remodeling)。最近的研究數據顯示表觀遺傳調控會藉由影響染色質的重塑來調控基因轉錄的活性,這些調控和記憶、學習以及認知有關。組蛋白去乙醯化調控因子Histone deacetylase (HDAC)的抑制劑已經被證實可以用來改善神經退化疾病的老鼠的表現型,像是亨丁頓舞蹈症及阿茲海默症。
    為了瞭解發育過程中組蛋白甲基化在神經生成所扮演的角色,我們提出一個方法系統性地去研究EHMT2在神經發育分化過程中的影響。 EHMT2(G9a) 是一種常染色質的甲基轉移酶,它能藉由甲基化組蛋白H3K9來調控轉錄的活性。在in vitro實驗中,我們以G9a的抑制劑BIX-01294處理老鼠的神經幹細胞 (mNSC),發現在同時加有HDAC抑制劑Valproic acid和BIX-01294的細胞中,Tuj1、Nfm和NeuroD1表現量明顯的比單獨加Valproic acid或BIX-01294增加許多,顯示組蛋白甲基化和乙醯化之間具有協同作用可以幫助神經幹細胞的分化。而在in vivo的實驗中,我們將HDAC抑制劑SAHA與BIX-01294經由腹腔注到三個月大的成年小鼠中,發現在小鼠大腦的Subventricular zone中的 doublecortin表現有明顯的增加。這結果顯示BIX-01294和SAHA可以促進小鼠腦中的Subventricular zone的神經幹細胞分化成新的神經元。


    Chromatin and epigenetic modifications play a central role in maintaining the gene expression programs that are important for both self-renewal and cell commitment. Recent research indicates that epigenetic modification may be integral to the cell fate commitment of neural stem cells. However, the molecules that are involved in this mechanism are not fully elucidated. Here we isolate mouse neuron stem cell (mNSC) from mouse embryonic brain (E11.5) and exposed mouse NSCs in vitro to HDAC inhibitors, valproic acid and sodium butyrate and a histone methyltransferase EHMT2 (G9a) inhibitor, BIX-01294, respectively, and analyzed their effects on mNSC differentiation. Both HDAC inhibitors and BIX-01294 enhance neuronal differentiation of mNSC which were characterized by increased elongation of neurites and increased expression of neuronal genes including Tuj1, Nfm and neuroD1. Expression of the synaptic proteins Synapsin and Synaptophysin which regulate release of neurotransmitter was increased in mNSC treated with valproic acid and is further increased in mNSC co-treated with valproic and BIX-01294. By delivering a HDAC inhibitor Suberoylanilide hydroxamic acid (SAHA) or BIX-01294 intraperitoneally in to adult mice, we show that expression of the young neuron marker doublecortin is significantly increased in the subventricular zone of lateral ventricle. Our results suggest that chromatin is dynamically remodeled during neurogenesis, and that di-methylation of histone H3 by Ehmt2 is associated with NSC self-renew in vitro and in vivo.

    Contents I. Introduction 1. Histones and Epigenetic Modifications………………………….………………………..….1 1.1 The histone structure……………………………………………………………………....1 1.2 Epigenetic modification of the histone structure…………………………………….….…1 1.2.1 DNA methylation…………………………………………………………….…..…..2 1.2.2 Histone acetylation…………………………………………………………….….….2 1.2.3 Histone methylation……………………………………………………….……....…3 1.2.4 Histone phosphorylation and ubiquitination………………….…………………...…4 1.3 The histone code……………………………………………………………………..…....4 2. Neural stem cells…………………………………………………….…………………..…..4 2.1 Discovery of neural stem cells………………………………………………………….4 2.2 The lineage model of neural stem cells…………………………....………………..….6 3. Epigenetics and neural degenerative diseases…………………...……..………………...…..8 3.1 Correlation between histone epigenetic modifications and neural degenerative diseases……………………………………………………...………………………...…...8 3.2 Application of HDAC inhibitors in the treatment of neural degenerative diseases in animal models…………………………..…………………………..……....…8 4. The histone methyltransferase Ehmt2 (G9a)………………………………………………....9 4.1 Ehmt2 and gene regulation……………………………………..…………….............9 4.2 Ehmt2 and mouse development………………………………………………….….10 4.3 The Ehmt2 inhibitor BIX-01294……………………………..…………...……...…10 II. Materials and Methods 1. Culturing of neural stem cells………………………………………………………….……12 2. Compound treatment………………………………………………………………………..12 3. Reverse transcription and polymerase chain reaction (RT-PCR)…………………..........….13 4. Microarrays ………………………………………………………………………...….…...14 5. Antibodies and immunocytochemical staining…………………………………………......14 6. Western blot……………………………………………………………….………....….…..15 7. Mouse intraperitoneal (i.p.) injection…………………………………………….................16 8. Tissue immunofluorescence staining……………………………………...………..............16 III. Results 1. Correlation of epigenetic modification and neuronal differentiation in mNSC…..….…..…18 1.1 Inhibition of HDACs promotes neuronal differentiation of mNSCs………………….....18 1.2 Inhibition of G9a by BIX-01294 also promotes neuronal differentiation of mNSCs……………………………………………………………………….…...….18 1.3 HDAC inhibitors and BIX-01294 promote neurite outgrowth in PC12 cells……………20 2. The synergestic effect of histone acetylation and methylation enzymes for mNSC lineage commitment………………………………………………….……........20 2.1 Cooperation of HDAC inhibitors and BIX-01294 for neuronal differentiation in mNSC………………………………………………….…..…………..20 2.2 The histone methylation profile of mNSC treated with BIX-01294…………………......22 2.3 Microarray analyses of gene expression in mNSC treated with valproic acid and BIX-01294………………………………………………………....….23 3. BIX-01294 increases neuronal differentiation in the SVZ of adult lateral ventricle……………………………………………………………………...............24 IV. Discussion…………………………………………………………………..……………...…..26 1. BIX-01294 induces neuronal differentiation in mouse neural stem cells……....……..........26 2. Changes in histone methylation and neural fate commitment……………………...........….26 3. SAHA and BIX-01294 promote neurogenesis in vivo………………...………...……….....27 V. Figures……………………………………………………………………………...........…....29 VI. References…………………………………………………………………………...….…..…51

    Reference List

    Balasubramaniyan,V., Boddeke,E., Bakels,R., Kust,B., Kooistra,S., Veneman,A., and Copray,S. (2006). Effects of histone deacetylation inhibition on neuronal differentiation of embryonic mouse neural stem cells. Neuroscience 143, 939-951.
    Benn,C.L., Butler,R., Mariner,L., Nixon,J., Moffitt,H., Mielcarek,M., Woodman,B., and Bates,G.P. (2009). Genetic knock-down of HDAC7 does not ameliorate disease pathogenesis in the R6/2 mouse model of Huntington's disease. PLoS. One. 4, e5747.
    Bird,A. (2002). DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6-21.
    Bird,A.P. (1986). CpG-rich islands and the function of DNA methylation. Nature 321, 209-213.
    Dambacher,S., Hahn,M., and Schotta,G. (2010). Epigenetic regulation of development by histone lysine methylation. Heredity 105, 24-37.
    Dulac,C. (2010). Brain function and chromatin plasticity. Nature 465, 728-735.
    Dodge,J.E., Kang,Y.K., Beppu,H., Lei,H., and Li,E. (2004). Histone H3-K9 methyltransferase ESET is essential for early development. Mol. Cell Biol. 24, 2478-2486.
    Doetsch,F., Caille,I., Lim,D.A., Garcia-Verdugo,J.M., and varez-Buylla,A. (1999). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703-716.
    Hsieh,J., Aimone,J.B., Kaspar,B.K., Kuwabara,T., Nakashima,K., and Gage,F.H. (2004). IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes. J. Cell Biol. 164, 111-122.
    Hsieh,J., Nakashima,K., Kuwabara,T., Mejia,E., and Gage,F.H. (2004). Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc. Natl. Acad. Sci. U. S. A 101, 16659-16664.
    Hsu,Y.C., Lee,D.C., Chen,S.L., Liao,W.C., Lin,J.W., Chiu,W.T., and Chiu,I.M. (2009). Brain-specific 1B promoter of FGF1 gene facilitates the isolation of neural stem/progenitor cells with self-renewal and multipotent capacities. Dev. Dyn. 238, 302-314.
    Jenuwein,T. and Allis,C.D. (2001). Translating the histone code. Science 293, 1074-1080.
    Jeong,M.R., Hashimoto,R., Senatorov,V.V., Fujimaki,K., Ren,M., Lee,M.S., and Chuang,D.M. (2003). Valproic acid, a mood stabilizer and anticonvulsant, protects rat cerebral cortical neurons from spontaneous cell death: a role of histone deacetylase inhibition. FEBS Lett. 542, 74-78.
    Laeng,P., Pitts,R.L., Lemire,A.L., Drabik,C.E., Weiner,A., Tang,H., Thyagarajan,R., Mallon,B.S., and Altar,C.A. (2004). The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells. J. Neurochem. 91, 238-251.
    Lepore,A.C., Han,S.S., Tyler-Polsz,C.J., Cai,J., Rao,M.S., and Fischer,I. (2004). Differential fate of multipotent and lineage-restricted neural precursors following transplantation into the adult CNS. Neuron Glia Biol. 1, 113-126.
    Lee,D.Y., Northrop,J.P., Kuo,M.H., and Stallcup,M.R. (2006). Histone H3 lysine 9 methyltransferase G9a is a transcriptional coactivator for nuclear receptors. J. Biol. Chem. 281, 8476-8485.
    Lee,D.C., Hsu,Y.C., Chung,Y.F., Hsiao,C.Y., Chen,S.L., Chen,M.S., Lin,H.K., and Chiu,I.M. (2009). Isolation of neural stem/progenitor cells by using EGF/FGF1 and FGF1B promoter-driven green fluorescence from embryonic and adult mouse brains. Mol. Cell Neurosci. 41, 348-363.
    Leung,D.C., Dong,K.B., Maksakova,I.A., Goyal,P., Appanah,R., Lee,S., Tachibana,M., Shinkai,Y., Lehnertz,B., Mager,D.L., Rossi,F., and Lorincz,M.C. (2011). Lysine methyltransferase G9a is required for de novo DNA methylation and the establishment, but not the maintenance, of proviral silencing. Proc. Natl. Acad. Sci. U. S. A 108, 5718-5723.
    Li,E., Bestor,T.H., and Jaenisch,R. (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915-926.
    Lubin,F.D. (2011). Epigenetic gene regulation in the adult mammalian brain: Multiple roles in memory formation. Neurobiol. Learn. Mem.
    Lyssiotis,C.A., Walker,J., Wu,C., Kondo,T., Schultz,P.G., and Wu,X. (2007). Inhibition of histone deacetylase activity induces developmental plasticity in oligodendrocyte precursor cells. Proc. Natl. Acad. Sci. U. S. A 104, 14982-14987.
    Nacher,J., Crespo,C., and McEwen,B.S. (2001). Doublecortin expression in the adult rat telencephalon. Eur. J. Neurosci. 14, 629-644.
    Nakagawa,Y., Kuwahara,K., Harada,M., Takahashi,N., Yasuno,S., Adachi,Y., Kawakami,R., Nakanishi,M., Tanimoto,K., Usami,S., Kinoshita,H., Saito,Y., and Nakao,K. (2006). Class II HDACs mediate CaMK-dependent signaling to NRSF in ventricular myocytes. J. Mol. Cell Cardiol. 41, 1010-1022.
    Nelson,E.D. and Monteggia,L.M. (2011). Epigenetics in the mature mammalian brain: Effects on behavior and synaptic transmission. Neurobiol. Learn. Mem.
    Negrini,M., Nicoloso,M.S., and Calin,G.A. (2009). MicroRNAs and cancer--new paradigms in molecular oncology. Curr. Opin. Cell Biol. 21, 470-479.
    Negishi,M., Oinuma,I., and Katoh,H. (2005). Plexins: axon guidance and signal transduction. Cell Mol. Life Sci. 62, 1363-1371.
    Probst,A.V., Dunleavy,E., and Almouzni,G. (2009). Epigenetic inheritance during the cell cycle. Nat. Rev. Mol. Cell Biol. 10, 192-206.
    Parent,J.M., Vexler,Z.S., Gong,C., Derugin,N., and Ferriero,D.M. (2002). Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann. Neurol. 52, 802-813.
    Pennartz,S., Belvindrah,R., Tomiuk,S., Zimmer,C., Hofmann,K., Conradt,M., Bosio,A., and Cremer,H. (2004). Purification of neuronal precursors from the adult mouse brain: comprehensive gene expression analysis provides new insights into the control of cell migration, differentiation, and homeostasis. Mol. Cell Neurosci. 25, 692-706.
    Rea,S., Eisenhaber,F., O'Carroll,D., Strahl,B.D., Sun,Z.W., Schmid,M., Opravil,S., Mechtler,K., Ponting,C.P., Allis,C.D., and Jenuwein,T. (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593-599.
    Richards,E.J. and Elgin,S.C. (2002). Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell 108, 489-500.
    Rowitch,D.H. and Kriegstein,A.R. (2010). Developmental genetics of vertebrate glial-cell specification. Nature 468, 214-222.
    Roopra,A., Sharling,L., Wood,I.C., Briggs,T., Bachfischer,U., Paquette,A.J., and Buckley,N.J. (2000). Transcriptional repression by neuron-restrictive silencer factor is mediated via the Sin3-histone deacetylase complex. Mol. Cell Biol. 20, 2147-2157.
    Roopra,A., Qazi,R., Schoenike,B., Daley,T.J., and Morrison,J.F. (2004). Localized domains of G9a-mediated histone methylation are required for silencing of neuronal genes. Mol. Cell 14, 727-738.
    Tachibana,M., Sugimoto,K., Nozaki,M., Ueda,J., Ohta,T., Ohki,M., Fukuda,M., Takeda,N., Niida,H., Kato,H., and Shinkai,Y. (2002). G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16, 1779-1791.
    Tachibana,M., Ueda,J., Fukuda,M., Takeda,N., Ohta,T., Iwanari,H., Sakihama,T., Kodama,T., Hamakubo,T., and Shinkai,Y. (2005). Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev. 19, 815-826.
    Temple,S. (2001). The development of neural stem cells. Nature 414, 112-117.
    Turner,B.M., Birley,A.J., and Lavender,J. (1992). Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69, 375-384.
    Zhang,Y. and Reinberg,D. (2001). Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15, 2343-2360.
    varez-Buylla,A., Garcia-Verdugo,J.M., and Tramontin,A.D. (2001). A unified hypothesis on the lineage of neural stem cells. Nat. Rev. Neurosci. 2, 287-293.
    Abel,T. and Zukin,R.S. (2008). Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr. Opin. Pharmacol. 8, 57-64.
    Alarcon,J.M., Malleret,G., Touzani,K., Vronskaya,S., Ishii,S., Kandel,E.R., and Barco,A. (2004). Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42, 947-959.
    Angelov,D., Vitolo,J.M., Mutskov,V., Dimitrov,S., and Hayes,J.J. (2001). Preferential interaction of the core histone tail domains with linker DNA. Proc. Natl. Acad. Sci. U. S. A 98, 6599-6604.
    Arvidsson,A., Collin,T., Kirik,D., Kokaia,Z., and Lindvall,O. (2002). Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 963-970.
    Ermini,F.V., Grathwohl,S., Radde,R., Yamaguchi,M., Staufenbiel,M., Palmer,T.D., and Jucker,M. (2008). Neurogenesis and alterations of neural stem cells in mouse models of cerebral amyloidosis. Am. J. Pathol. 172, 1520-1528.
    Egger,B., Chell,J.M., and Brand,A.H. (2008). Insights into neural stem cell biology from flies. Philos. Trans. R. Soc. Lond B Biol. Sci. 363, 39-56.
    Ma,D.K., Bonaguidi,M.A., Ming,G.L., and Song,H. (2009). Adult neural stem cells in the mammalian central nervous system. Cell Res. 19, 672-682.
    Malatesta,P., Appolloni,I., and Calzolari,F. (2008). Radial glia and neural stem cells. Cell Tissue Res. 331, 165-178.
    Merkle,F.T., Tramontin,A.D., Garcia-Verdugo,J.M., and varez-Buylla,A. (2004). Radial glia give rise to adult neural stem cells in the subventricular zone. Proc. Natl. Acad. Sci. U. S. A 101, 17528-17532.
    Ming,G.L. and Song,H. (2005). Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci. 28, 223-250.
    Ming,G.L. and Song,H. (2011). Adult neurogenesis in the Mammalian brain: significant answers and significant questions. Neuron 70, 687-702.
    Quinti,L., Chopra,V., Rotili,D., Valente,S., Amore,A., Franci,G., Meade,S., Valenza,M., Altucci,L., Maxwell,M.M., Cattaneo,E., Hersch,S., Mai,A., and Kazantsev,A. (2010). Evaluation of histone deacetylases as drug targets in Huntington's disease models. Study of HDACs in brain tissues from R6/2 and CAG140 knock-in HD mouse models and human patients and in a neuronal HD cell model. PLoS. Curr. 2.
    Yao,X., Zhang,J.R., Huang,H.R., Dai,L.C., Liu,Q.J., and Zhang,M. (2010). Histone deacetylase inhibitor promotes differentiation of embryonic stem cells into neural cells in adherent monoculture. Chin Med. J. (Engl. ) 123, 734-738.
    Yokochi,T., Poduch,K., Ryba,T., Lu,J., Hiratani,I., Tachibana,M., Shinkai,Y., and Gilbert,D.M. (2009). G9a selectively represses a class of late-replicating genes at the nuclear periphery. Proc. Natl. Acad. Sci. U. S. A 106, 19363-19368.
    Chang,Y., Zhang,X., Horton,J.R., Upadhyay,A.K., Spannhoff,A., Liu,J., Snyder,J.P., Bedford,M.T., and Cheng,X. (2009). Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294. Nat. Struct. Mol. Biol. 16, 312-317.
    Chaturvedi,C.P., Hosey,A.M., Palii,C., Perez-Iratxeta,C., Nakatani,Y., Ranish,J.A., Dilworth,F.J., and Brand,M. (2009). Dual role for the methyltransferase G9a in the maintenance of beta-globin gene transcription in adult erythroid cells. Proc. Natl. Acad. Sci. U. S. A 106, 18303-18308.
    Chinnadurai,G. (2007). Transcriptional regulation by C-terminal binding proteins. Int. J. Biochem. Cell Biol. 39, 1593-1607.
    Cau,E. and Blader,P. (2009). Notch activity in the nervous system: to switch or not switch? Neural Dev. 4, 36.
    Collins,R. and Cheng,X. (2010). A case study in cross-talk: the histone lysine methyltransferases G9a and GLP. Nucleic Acids Res. 38, 3503-3511.
    Couillard-Despres,S., Winner,B., Schaubeck,S., Aigner,R., Vroemen,M., Weidner,N., Bogdahn,U., Winkler,J., Kuhn,H.G., and Aigner,L. (2005). Doublecortin expression levels in adult brain reflect neurogenesis. Eur. J. Neurosci. 21, 1-14.
    Kriegstein,A.R. and Gotz,M. (2003). Radial glia diversity: a matter of cell fate. Glia 43, 37-43.
    Krishnan,S., Horowitz,S., and Trievel,R.C. (2011). Structure and function of histone H3 lysine 9 methyltransferases and demethylases. Chembiochem. 12, 254-263.
    Kazantsev,A.G. and Thompson,L.M. (2008). Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat. Rev. Drug Discov. 7, 854-868.
    Kao,H.Y., Downes,M., Ordentlich,P., and Evans,R.M. (2000). Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev. 14, 55-66.
    Kilgore,M., Miller,C.A., Fass,D.M., Hennig,K.M., Haggarty,S.J., Sweatt,J.D., and Rumbaugh,G. (2010). Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology 35, 870-880.
    Kubicek,S., O'Sullivan,R.J., August,E.M., Hickey,E.R., Zhang,Q., Teodoro,M.L., Rea,S., Mechtler,K., Kowalski,J.A., Homon,C.A., Kelly,T.A., and Jenuwein,T. (2007). Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol. Cell 25, 473-481.
    Kuwabara,T., Hsieh,J., Nakashima,K., Taira,K., and Gage,F.H. (2004). A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116, 779-793.
    Kuo,M.H. and Allis,C.D. (1998). Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20, 615-626.
    Korzus,E., Rosenfeld,M.G., and Mayford,M. (2004). CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42, 961-972.
    Kouzarides,T. (2002). Histone methylation in transcriptional control. Curr. Opin. Genet. Dev. 12, 198-209.
    Shao,Z., Luo,Q., Liu,D., Mi,Y., Zhang,P., and Ju,G. (2011). Induced Differentiation of Neural Stem Cells of Astrocytic Origin to Motor Neurons in the Rat. Stem Cells Dev.
    Shen,Y. (2000). [Chromatin structure and gene activation]. Zhongguo Yi. Xue. Ke. Xue. Yuan Xue. Bao. 22, 403-406.
    Shinkai,Y. and Tachibana,M. (2011). H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev. 25, 781-788.
    Spannhoff,A., Hauser,A.T., Heinke,R., Sippl,W., and Jung,M. (2009). The emerging therapeutic potential of histone methyltransferase and demethylase inhibitors. ChemMedChem. 4, 1568-1582.
    Suzuki,H., Taguchi,T., Tanaka,H., Kataoka,H., Li,Z., Muramatsu,K., Gondo,T., and Kawai,S. (2004). Neurospheres induced from bone marrow stromal cells are multipotent for differentiation into neuron, astrocyte, and oligodendrocyte phenotypes. Biochem. Biophys. Res. Commun. 322, 918-922.
    Gritti,A., Parati,E.A., Cova,L., Frolichsthal,P., Galli,R., Wanke,E., Faravelli,L., Morassutti,D.J., Roisen,F., Nickel,D.D., and Vescovi,A.L. (1996). Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J. Neurosci. 16, 1091-1100.
    Gage,F.H. (2000). Mammalian neural stem cells. Science 287, 1433-1438.
    Gotz,M. and Huttner,W.B. (2005). The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777-788.
    Gould,E. (2007). How widespread is adult neurogenesis in mammals? Nat. Rev. Neurosci. 8, 481-488.
    Wang,Y., Zhang,W., Jin,Y., Johansen,J., and Johansen,K.M. (2001). The JIL-1 tandem kinase mediates histone H3 phosphorylation and is required for maintenance of chromatin structure in Drosophila. Cell 105, 433-443.
    Weake,V.M. and Workman,J.L. (2008). Histone ubiquitination: triggering gene activity. Mol. Cell 29, 653-663.
    Ooi,L. and Wood,I.C. (2007). Chromatin crosstalk in development and disease: lessons from REST. Nat. Rev. Genet. 8, 544-554

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE