簡易檢索 / 詳目顯示

研究生: 李紹馨
Lee, Shao-Hsin
論文名稱: 電漿輔助硒化製備二硒化鎢/氧化鎢三維奈米結構應用於高靈敏一氧化氮感測器
Phase Engineered 1T/2H WSe2/WOx 3D Nanostructures as Highly Sensitive NO Gas Sensors by Plasma-Assisted Selenization Process
指導教授: 闕郁倫
Chueh, Yu-Lun
口試委員: 邱博文
Chiu, Po-Wen
戴念華
Tai, Nyan-Hwa
張文豪
Chang, Wen-Hao
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 51
中文關鍵詞: 二硒化鎢電漿輔助過渡金屬硫族化合物氣體感測器斜角蒸鍍
外文關鍵詞: WSe2, Plasma-assisted, TMDC, Gas sensor, GLAD
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究結合斜角沉積蒸鍍技術與電漿輔助化學氣相還原法,製備具有三維奈米結構之二硒化鎢,以作為氣體感測器應用之反應層。
    使用斜角蒸鍍系統的目的,是為了獲得一與平片相比,具有更大表面積對體積比的三維奈米結構,從而增進應用於感測器上的能力。在此,我們選擇二硒化鎢做為一氧化氮氣體檢測的傳感材料,是由於其具P型半導體性質,且與一氧化氮分子間良好的電荷轉移現象。[1]經過參數優化後,我們的氣體偵測器顯示出高靈敏度的性能,在室溫下,對濃度為60 ppb的一氧化氮氣體有著超過40%的響應,經計算推論後,其偵測極限將達到約為15ppb。
    實驗結果也顯示,在二硒化鎢中的相組成成分,將會影響其傳感表現。揭示了少量金屬相在半導體相基質中的存在,將能提升感測能力之重要性。其中,相的濃度可藉由電漿輔助硒化製程的合成溫度來調控。
    另外,相較於傳統的化學氣相沉積法,電漿的輔助將能促進過渡金屬硫族化合物在較低的合成溫度下形成,顯現了其應用在可撓式電子元件製備上的潛力。


    In this work, we have successfully combined the glancing angle deposition (GLAD) approach with plasma-assisted chemical vapor reduction (PACVR) method to fabricate the nano-structured tungsten diselenide (WSe2) as the reactive layer for gas sensor application.
    The purpose of using GLAD system is to obtain the nanostructures with much larger surface-area-to-volume ratio compared to flat films, thus increasing the capacity for sensing application. Here we choose WSe2 as the sensing material for nitric oxide (NO) gas detection due to its p-type semiconducting property and effective charge transfer with NO molecules. [1] After parameter optimization, our sensor shows the highly sensitive performance with a response over 40% at 60 ppb at room temperature, and a derived limit of detection about 15 ppb.
    We also demonstrated that the composition of phases in the WSe2 will influence the sensing behavior, revealing the importance of small amount of 1T (metallic) phase existed in the dominant 2H (semiconducting) matrix to enhance the sensing capability, where the phase concentration can be controlled by the synthesis temperature during PACVR process.
    Additionally, in comparison with conventional chemical vapor deposition (CVD) processes, the assistance of plasma function facilitates the transformation of transition metal dichalcogenides (TMDCs) at lower temperatures, showing the potential for flexible devices fabrication.

    Abstract (Chinese) ................................................................................... I Abstract (English) ................................................................................... II Acknowledgement (Chinese) ................................................................. III Contents ................................................................................................. IV Table caption .......................................................................................... V Figure caption ........................................................................................ VI Chapter 1 Introduction ............................................................................. 1 1.1 Gas sensor .................................................................................. 1 1.1.1 Overview of gas sensor.................................................... 1 1.1.2 Mechanism of gas sensor ................................................. 2 1.1.3 Metal oxide vs. TMDCs .................................................. 4 1.2 Transition metal dichalcogenides (TMDCs) ............................... 5 1.2.1 Composition, crystal phases and electronic structure ....... 5 1.2.2 Optical and vibrational properties .................................. 11 1.2.3 Manufacturing process of TMDCs ................................. 14 Chapter 2 Experiment ............................................................................ 22 2.1 Motivation ................................................................................ 22 2.2 Experimental design ................................................................. 23 Chapter 3 Results and discussion ........................................................... 29 3.1 Fabrication and characterization of WSe2 Nanostructures ......... 29 3.2 Optimization of gas sensing performance ................................. 31 3.2.1 Comparison of flat and structured sensors ..................... 31 3.2.2 Effect of synthesis temperature ...................................... 32 3.2.3 Effect of plasma power .................................................. 38 3.2.4 Effect of structures height and coverage ........................ 38 3.3 Limit of detection ..................................................................... 42 Chapter 4 Summary and future works .................................................... 46 Chapter 5 References ............................................................................. 47

    1. Zhao, P.K., D.; Azcatl, A.; Zhang, C.; Tosun, M.; Liu, Y. S.; Hettick, M.; Kang, J. S.; McDonnell, S.; Santosh, K. C.; Guo, J.; Cho, K.; Wallace, R. M.; Javey, A., Air stable p-doping of WSe2 by covalent functionalization. ACS Nano, 2014. 8(10): p. 10808-10814.
    2. L.B. Kreuzer, C.K.N.P., Nitric oxide air pollution: detection by optoacoustic spectroscopy. Science, 1971. 173: p. 45-47.
    3. Frandsen, U.L., M.; Hellsten, Y., Localization of nitric oxide synthase in human skeletal muscle. Biochem Bioph Res Co, 1996. 227(1): p. 88-93.
    4. Kohl, D., Function and applications of gas sensors. J. Phys. D: Appl. Phys, 2001. 34: p. 125-149.
    5. Yang, W., et al., Two-dimensional layered nanomaterials for gas-sensing applications. Inorg. Chem. Front, 2016. 3(4): p. 433-451.
    6. Shengxue Yang, C.J., and Su-huai We, Gas sensing in 2D materials. APPLIED PHYSICS REVIEWS, 2017. 4: p. 021304.
    7. Weimar, N.B., Conduction Model of Metal Oxide Gas Sensors. Journal of Electroceramics, 2001. 7(2): p. 143-167.
    8. Jiménez-Cadena G, R.J., Rius FX, Gas sensors based on nanostructured materials. Analyst, 2007. 132(11): p. 1083-1099.
    9. Q. Yue, Z.S., S. Chang, and J. Li, Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res. Lett., 2013. 8: p. 425.
    10. Miller, D.R., S.A. Akbar, and P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sensors and Actuators B: Chemical, 2014. 204: p. 250-272.
    11. G. F. Fine, L.M.C., A. Afonja, and R. Binions, Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors, 2010. 10(6): p. 5469-5502.
    12. S. Park, S.A., H. Ko, C. Jin, C. Lee, Synthesis of nanograined ZnO nanowires and their enhanced gas sensing properties. ACS Appl. Mater. Interfaces, 2012. 4: p. 3650–3656.
    13. Q. Wan, Q.H.L., Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett, 2004. 84: p. 3654.
    14. Y. Qin, F.W., W. Shen, M. Hu, Mesoporous three-dimensional network of crystalline WO3 nanowires for gas sensing application. J. Alloys Compd, 2012. 540(21-26).
    15. G. Wang, X.G., J. Horvat, J. Park, Facile synthesis and characterization of iron oxide semiconductor nanowires for gas sensing application. J. Phys. Chem. C, 2008. 112(15220–15225).
    16. J. Chen, K.W., L. Hartman, W. Zhou, H2S detection by vertically aligned cuo nanowire array sensors. J. Phys. Chem. C, 2008. 2008(112): p. 16017–16021.
    17. F. Schedin, A.K.G., S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater., 2007. 6: p. 652.
    18. Hai Li, J.W., Zongyou Yin, and Hua Zhang, Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS2 and WSe2 Nanosheets. Accounts of Chemical Research, 2014. 47(4): p. 1067-1075.
    19. Manish Chhowalla, H.S.S., Goki Eda, Lain-Jong Li, Kian Ping Loh & Hua Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. NATURE CHEMISTRY, 2013. 5: p. 263-275.
    20. Qing Hua Wang, K.K.-Z., Andras Kis, Jonathan N. Coleman & Michael S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012. 7: p. 699-712.
    21. Wilson, J.A.Y., A. D., Transition Metal Dichalcogenides Discussion and Interpretation of Observed Optical, Electrical and Structural Properties. Adv Phys, 1969. 18(73): p. 193.
    22. Py, M.A.H., R. R., Structural Destabilization Induced by Lithium Intercalation in Mos2 and Related-Compounds. Can J Phys, 1983. 61(1): p. 76-84.
    23. Yuqiang Ma, B.L., Anyi Zhang, Liang Chen, Mohammad Fathi, Chenfei Shen, Ahmad N. Abbas, Mingyuan Ge, Matthew Mecklenburg, and Chongwu Zhou, Reversible Semiconducting-to-Metallic Phase Transition in Chemical Vapor Deposition Grown Monolayer WSe2 and Applications for Devices. ACS Nano, 2015. 9(7): p. 7383-7391.
    24. Andrey N. Enyashin, L.Y., Lothar Houben, Igor Popov, Marc Weidenbach, Reshef Tenne, Maya Bar-Sadan, and Gotthard Seifert, New Route for Stabilization of 1T-WS2 and MoS2 Phases. J Phys Chem C, 2011. 115(50): p. 24586-24591.
    25. Won Seok Yun, S.W.H., Soon Cheol Hong, In Gee Kim, and J. D. Lee, Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). PHYSICAL REVIEW B, 2012. 85: p. 33305.
    26. Kin Fai Mak, C.L., James Hone, Jie Shan, and Tony F. Heinz, Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett, 2010. 105: p. 136805.
    27. Ramasubramaniam, A., Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B, 2012. 86: p. 115409.
    28. Cheiwchanchamnangij, T.L., W. R. L, Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B, 2012. 85: p. 205302.
    29. Verble, T.J.W.a.J.L., Infrared and Raman studies of long-wavelength optical phonons in hexagonal MoS2. Phys. Rev. B: Solid State, 1971. 3(12): p. 4286-4292.
    30. Wieting, J.L.V.a.T.J., Lattice mode degeneracy in MoS2 and other layer compounds. Phys. Rev. Lett, 1970. 25(6): p. 362-365.
    31. G., Z.W.G.Z.A.K.K.P.J.R.T.M.Z.X.K.C.T.P.H.E., Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale, 2013. 5(20): p. 9677-9683.
    32. Zeng, H.L.L., G. B.; Dai, J. F.; Yan, Y. J.; Zhu, B. R.; He, R. C.; Xie, L.; Xu, S. J.; Chen, X. H.; Yao, W.; Cui, X. D., Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci Rep-Uk, 2013. 3.
    33. Xiao Huang, Z.Z.a.H.Z., Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev, 2013. 42: p. 1934.
    34. Zeng Z, Y.Z., Huang X, Li H, He Q, Lu G, Boey F, Zhang H., Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew Chem Int Ed Engl, 2011. 50(47): p. 11093-7.
    35. Zeng Z, S.T., Zhu J, Huang X, Yin Z, Lu G, Fan Z, Yan Q, Hng HH, Zhang H., An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew Chem Int Ed Engl, 2012. 51(36): p. 9052-6.
    36. Matte HS, G.A., Manna AK, Late DJ, Datta R, Pati SK, Rao CN., MoS2 and WS2 analogues of graphene. Angew Chem Int Ed Engl., 2010. 49(24): p. 4059-62.
    37. Lee, Y.H.Z., X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J.; Lin, T. W.,, Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Adv Mater, 2012. 24(17): p. 2320-2325.
    38. Lin, Y.C.Z., W. J.; Huang, J. K.; Liu, K. K.; Lee, Y. H.; Liang, C. T.; Chu, C. W.; Li, L. J., Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale, 2012. 4(20): p. 6637-6641.
    39. Liu, K.K.Z., W. J.; Lee, Y. H.; Lin, Y. C.; Chang, M. T.; Su, C.; Chang, C. S.; Li, H.; Shi, Y. M.; Zhang, H.; Lai, C. S.; Li, L. J., Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates. Nano Lett., 2012. 12(3): p. 1538-1544.
    40. A. Castellanos-Gomez, M.B., A. M. Goossens, V. E. Calado, H. S. J. van der Zant, and G. A. Steele, Laser-Thinning of MoS2: On Demand Generation of a Single-Layer Semiconductor. NanoLett, 2012. 12(6): p. 3187-3192.
    41. Yu-Ze Chen, H.M., Teng-Yu Su, Jian-Guang Li, Kai-Yuan Cheng, Po-Wen Chiu, and Yu-Lun Chueh, Ultrafast and Low Temperature Synthesis of Highly Crystalline and Patternable Few-Layers Tungsten Diselenide by Laser Irradiation Assisted Selenization Process. ACS nano, 2015. 9(4): p. 4346-4353.
    42. Chi-Chih Huang, H.M., Yu-Ze Chen, Teng-Yu Su, Jian-Guang Li, Chia-Wei Chen,Yu-Ting Yen, Zhiming M. Wang, and Yu-Lun Chueh, Transfer-Free Growth of Atomically Thin Transition Metal Disulfides Using a Solution Precursor by a Laser Irradiation Process and Their Application in Low-Power Photodetectors. Nano Lett., 2016. 16: p. 2463-2470.
    43. M. T. Taschuk, M.M.H., and M. J. Brett, Chapter 13 - Glancing Angle Deposition in Handbook of Deposition Technologies for Films and Coatings (Third Edition). ed Boston: William Andrew Publishing, 2010: p. 621-678.
    44. D. Merki, H.V., L. Rovelli, S. Fierro, X. Hu, Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci., 2012. 3(8): p. 2515-2525.
    45. M. R. Ryzhikov, V.A.S., S. G. Kozlova, S. P. Gabuda and V. E. Fedorov, Solid-state reaction as a mechanism of 1T [LEFT RIGHT ARROW] 2H transformation in MoS2 monolayers. J. Comput. Chem, 2015. 36: p. 2131-2134.
    46. Yang, K., et al., Composition- and phase-controlled synthesis and applications of alloyed phase heterostructures of transition metal disulphides. Nanoscale, 2017. 9(16): p. 5102-5109.
    47. Jing Li, Y.L., Qi Ye, Martin Cinke, Jie Han, and M. Meyyappan, Carbon Nanotube Sensors for Gas and Organic Vapor Detection. NANO LETTERS, 2003. 3(7): p. 929-933.
    48. Martins, H.N., T, MultiVariate Calibration. Wiley & Sons: New York, 1998.
    49. Currie, L.A., Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995). Pure Appl. Chem, 1995. 67: p. 1699.
    50. Chih-Hung Lin, S.-J.C., Fellow, IEEE , and Ting-Jen Hsueh, A WO3 Nanoparticles NO Gas Sensor Prepared by Hot-Wire CVD. IEEE ELECTRON DEVICE LETTERS, 2017. 38(2): p. 266-269.
    51. Hai Li, J.W., Zongyou Yin, and Hua Zhang, Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS2 and WSe2 Nanosheets. Accounts of Chemical Research 2014. 47(4): p. 1067-1075.
    52. Weiwei Li, X.G., Yufen Guo, Jizan Rong, Youpin Gong, Liqiong Wu, Xuemin Zhang, Peng Li, Jianbao Xu, Guosheng Cheng, Mengtao Sun, and Liwei Liu, Reduced Graphene Oxide Electrically Contacted Graphene Sensor for Highly Sensitive Nitric Oxide Detection. ACS Nano, 2011. 5(9): p. 6955-6961.
    53. Cho, B.K., A. R.; Park, Y.; Yoon, J.; Lee, Y. J.; Lee, S.; Yoo, T. J.; Kang, C. G.; Lee, B. H.; Ko, H. C.; Kim, D. H.; Hahm, M. G, Bifunctional sensing characteristics of chemical vapor deposition synthesized atomic-layered MoS2. ACS Appl. Mater. Interfaces, 2015. 7(4): p. 2952-2959.
    54. Soo-Yeon Cho, S.J.K., Youhan Lee, Jong-Seon Kim, Woo-Bin Jung, Hae-Wook Yoo, Jihan Kim, and Hee-Tae Jung, Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS2 Layers. ACS Nano, 2015. 9: p. 9314-9321.
    55. Bilu Liu, L.C., Gang Liu, Ahmad N. Abbas, Mohammad Fathi, and Chongwu Zhou, High-Performance Chemical Sensing Using Schottky-Contacted Chemical Vapor Deposition Grown Monolayer MoS2 Transistors. ACS Nano, 2014. 8(5): p. 5304-5314.

    QR CODE