簡易檢索 / 詳目顯示

研究生: 王偉航
Wang, Wei-Hang
論文名稱: 結合雷射測距與單眼影像於嵌入式移動機器人之人體偵測與追蹤
Human Detection and Tracking for Embedded Mobile Robots by Integrating Laser-range-finding and Monocular Imaging
指導教授: 陳永昌
Chen, Yung-Chang
口試委員: 黃仲陵
Huang, Chung-Lin
賴尚宏
Lai, Shang-Hong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 57
中文關鍵詞: 人體偵測腳偵測追蹤單眼相機雷射測距儀機器人
外文關鍵詞: human detection, leg detection, tracking, monocular camera, laser-range-finder, robot
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現代的服務型機器人有個重要的基礎課題,那就是人機互動(Human-robot Interaction)。而要達成這項任務,機器人必須具備有能偵測與跟蹤周圍的人的人 的能力。由其是對於自主移動機器人,能穩健地追蹤目標的能力是他們不可或缺的。因此,一個穩健的人體偵測與追蹤系統在機器人學中是一塊很重要的研究領域。

    在本篇論文中,我們提出了一套裝載於移動平台的系統,其上搭載有雷射測 距儀與單眼攝影機。機器人能取得並結合單眼攝影機的影像以及雷射測距資訊, 有效率地偵測並追蹤周圍的人。我們使用一個由 Cascade Adaboost 架構訓練一組 人腳的雷射點幾何特徵而成的偵測器來偵測人腳。我們也修改了 C4 人體偵測器, 加入了雷射資訊並提出一個 Range C4 人體偵測器,它可以達到比 C4 偵測器更低的 false positive rate.

    另外,這些被偵測到的人腳跟人體也進一步處理與融合以達成持續的跟蹤的目標,我們使用 global nearest neighbor(GNN)來做 data association,以及序慣式卡爾曼濾波器(sequential Kalman filter)和定速模型做為追蹤的策略。所以偵測到的資料與所以現有的追蹤目標之間的資料分配與聯結由 GNN 來決定, GNN 可以找出一個整體相似度合為最高的分配結果。而每個目標的狀態則是根據分配到的偵測結果依序用卡爾曼濾波器更新。我們也讓機器人在一般室內場所做了即時追踨的實驗來證明我們提出的方法的穩健與效率。


    A fundamental issue for modern service robots is human–robot interaction. In order to perform such a task, these robots need to detect and track people in the surroundings. Especially, to track targets robustly is a indispensable capability of autonomous mobile robots. Thus , a robust human detection and tracking system is an important research area in robotics.

    In this thesis, we present a system which is able to detect and track people efficiently by integrating laser measurements and monocular camera images information on mobile platform. A laser-based leg detector is used to detect human legs, which is trained by cascaded Adaboost with a set of geometrical features of scan segments. A visual human detector Range C4 is also proposed, which is modified from C4 human detector by adding laser range information. It achieves lower false positive rate than original C4 detector.

    The detected legs or persons are fused and tracked by a global nearest neighbor (GNN) data association and a sequential Kalman filtering with constant velocity model strategies. Measurements are assigned to tracks by GNN which assigns measurement by maximum similarity sum, and track states are updated by using corresponded measurements sequen- tially. Several experiments are done and to demonstrate the robustness and efficiency of our system.

    Abstract i Contents ii 1 Introduction 1 1.1 Overview of Mobile Robots 1 1.2 Motivation 2 1.3 Thesis Organization 3 2 Related Works 4 2.1 Vision-based Approach 4 2.1.1 Monocular Camera 4 2.1.2 Stereo Camera 5 2.1.3 Omnidirectional Camera 5 2.2 Laser-based Approach 6 2.3 Multisensor-Based Approach 7 3 System Overview 8 3.1 System Flowchart 8 3.2 Sensors 9 3.2.1 Laser Range Finder 9 3.2.2 Monocular Camera 10 3.3 Robotic Platform 12 4 Human Detection 14 4.1 Laser-basedLegDetection 14 4.1.1 Segmentation 15 4.1.2 FeatureDefinitions 15 4.1.3 Classification 16 4.2 Vision-basedHumanDetection 19 4.2.1 CENTRIST visual descriptor 19 4.2.2 C4 Detection Framework 20 4.2.3 Camera-Laser Calibrationand Projection 22 4.2.4 Range C4 human detector 23 4.2.5 Fixed-point trick 27 5 Multi-Target Tracking 29 5.1 KF-Based Tracking 30 5.2 Data Association 33 5.3 Creating and DeletingTracks 37 6 Experimental Results 39 6.1 Experimental Environments 39 6.2 Leg Detection 40 6.3 Visual Human Detection 42 6.4 Tracking 44 6.4.1 8-shaped trajectory tracking 45 6.4.2 Large angle turn tracking 45 6.4.3 People in corridor 46 6.4.4 Tracking and following by a moving robot 47 7 Conclusion and Future Works 52 7.1 Conclusion 52 7.2 FutureWorks 53

    [1] B. Schiele, M. Andriluka, N. Majer, S. Roth, and C. Wojek, “Visual people detection: Different models, comparison and discussion,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2009.

    [2] W. Zajdel, Z. Zivkovic, and B. J. A. Kro ̈se, “Keeping track of humans: Have I seen this person before?” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2081–2086, April 2005.

    [3] A. Ess, B. Leibe, K. Schindler, and L. van Gool, “Robust multiperson tracking from a mobile platform,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 31, no. 10, pp. 1831–1845, October 2009.

    [4] D. Gavrila and S. Munder, “Multi-cue pedestrian detection and tracking from a moving vehicle,” International Journal of Computer Vision (IJCV), vol. 73, no. 1, pp. 41–59, 2007.

    [5] D. Mitzel, E. Horbert, A. Ess, and B. Leibe, “Multi-person tracking with sparse detection and continuous segmentation,” Proceedings of the European Conference on Computer vision (ECCV) : Part I, vol. 1, pp. 397–410, 2010.

    [6] F. D. la Torre, C. Vallespi, P. E. Rybski, M. Veloso, and T. Kanade, “Learning to track multiple people in omnidirectional video,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 4150–4155, April 2005.

    [7] A. Fod, A. Howard, and M. Mataric, “Laser-based people tracking,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), vol. 3, pp. 3024–3029, 2002.

    [8] D. Schulz, W. Burgard, D. Fox, and A. Cremers, “People tracking with mobile robots using sample-based joint probabilistic data association filters,” The International Journal of Robotics Research (IJRR), vol. 22, no. 2, p. 99, 2003.

    [9] K. O. Arras, O ́. Mar ́ınezMozos, and W. Burgard, “Using boosted features for the detection of people in 2d range data,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 3402–3407, 2007.

    [10] K. O. Arras, S. Grzonka, M. Luber, and W. Burgard, “Efficient people tracking in laser range data using a multi-hypothesis leg-tracker with adaptive occlusion probabilities,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 1710–1715, 2008.

    [11] M. Montemerlo, S. Thrun, and W. Whittaker, “Conditional particle filters for simultaneous mobile robot localization and people-tracking,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), May 2002.

    [12] N. Bellotto and H. Hu, “Multisensor-based human detection and tracking for mobile service robots,” IEEE Transactions on Systems, Man, and Cybernetics (SMC), Part B, vol. 39, no. 1, pp. 167–181, February 2009.

    [13] B. Jung and G. S. Sukhatme, “Real-time motion tracking from a mobile robot,” International Journal of Social Robotics (IJSR), 2010.

    [14] C. Martin, E. Schaffernicht, A. Scheidig, and H.-M. Gross, “Multi-modal sensor fusion using a probabilistic aggregation scheme for people detection and tracking,” Robotics and Autonomous Systems (RAS), vol. 54, pp. 721–728, 2006.

    [15] H. Ueda, J. Lee, S. Okamoto, B.-J. Yi, and S. YUTA, “People tracking method for a mobile robot with laser scanner and omni directional camera,” International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), November 2011.

    [16] J. Wu, C. Geyer, and J. M. Rehg, “Real-time human detection using contour cues,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), May 2011.

    [17] D. C. Brown, “Decentering distortion of lenses,” Photometric Engineering, vol. 32, no. 3, pp. 444–462, 1966.

    [18] C. Premebida, “Segmentation and geometric primitives extraction from 2d laser range data for mobile robot applications,” Rob ́otica, 2005.

    [19] P. Viola and M. Jones, “Robust real-time object detection,” International Journal of Computer Vision (IJCV), 2002.

    [20] J. Wu and J. M. Rehg, “CENTRIST: A visual descriptor for scene categorization,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 33, no. 8, pp. 1489–1501, 2011.

    [21] R. Zabih, , R. Zabih, and J. W. Ll, “Non-parametric local transforms for computing visual correspondence,” Proceedings of the European Conference on Computer Vision (ECCV), vol. 2, pp. 151–158, May 1994.

    [22] J. Wu and J. M. Rehg, “Beyond the euclidean distance: Creating effective visual codebooks using the histogram intersection kernel,” Proceedings of IEEE International Conference on Computer Vision (ICCV), 2009.

    [23] G. Welch and G. Bishop, “An introduction to the kalman filter,” University of North Carolina at Chapel Hill, September 1997.

    [24] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press, August 2005.

    [25] Y. Bar-Shalom and X. Li, Multitarget Multisensor Tracking : Principles and Techniques. YBS Publishing, 1995.

    [26] H. Durrant-Whyte, Multisensor data fusion, ser. Handbook of Robotics. Springer, 2006.

    [27] I. J. Cox, “A review of statistical data association techniques for motion correspondence,” International Journal of Computer Vision (IJCV), 1993.

    [28] P. Konstantinova, A. Udvarev, and T. Semerdjiev, “A study of a target tracking algorithm using global nearest neighbor approach,” Proceedings of the International Conference on Computer Systems and Technologies (ICCST), 2003.

    [29] J. Munkres, “Algorithms for the assignment and transportation problems,” Journal of the Society for Industrial and Applied Mathematics, vol. 5, no. 1, 1957.

    [30] F. Bourgeois and J.-C. Lassalle, “An extension of the munkres algorithm for the assignment problem to rectangular matrices,” Communications of the ACM, 1971.

    [31] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 886–893, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE