簡易檢索 / 詳目顯示

研究生: 陳正岳
Chen, Cheng-Yueh
論文名稱: 具電網至車輛及車輛至家庭操作能力之電動車永磁同步馬達驅動系統開發
Development of an Electric Vehicle Permanent-Magnet Synchronous Motor Drive Incorporating with Grid-to-Vehicle and Vehicle-to-Home Operation Capabilities
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員: 謝欣然
廖聰明
王醴
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 169
中文關鍵詞: 永磁同步馬達無位置感測控制電動車電池雙向變頻器速度控制電壓控制電流控制充電控制功因矯正電網對車輛車輛對家庭
外文關鍵詞: permanent-magnet synchronous motor, sensorless control, electric vehicle, battery, bidirectional inverter, speed control, voltage control, current control, charging control, power factor correction, grid-to-vehicle, vehicle-to-home
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在開發一電動車無位置感測永磁同步馬達驅動系統,其兼具電網至車輛及車輛至家庭操作功能。所建馬達驅動系統之電力電路由一單臂雙向前級直流-直流轉換器及一變頻器組成。前者可於放電模式下,將蓄電池電壓提升建立較高電壓之直流鏈;以及由市電對蓄電池充電或回收馬達之在生煞車能量。兩級電力電路之所含數位控制均以一共同數位處理器實現之。
    在路行馬達驅動模式下,妥善設計之標準永磁同步馬達驅動系統具有良好之操作性能,含啟動、加減速、動態及再生煞車等特性。此外,提升之直流鏈電壓、換相移位和弱磁等策略可進一步提升其於高速下之性能。避免使用偵測之轉子絕對位置,本論文亦開發一用於電動車之混合型無位置感測控制永磁同步驅動系統。於啟動及低速下,馬達先以高頻注入法操控;啟動達一定轉速後,再切換改採延伸型反電動勢無位置感測控制法。此無位置感測控制永磁同步馬達驅動系統兼具易於啟動及良好高速運轉性能。標準與無位置感測控制永磁同步馬達驅動系統之性能均以一些實測結果從事其性能比較評估。
    在閒置狀態,所開發驅動系統之電力電路可重新安排以執行電網至車輛及車輛至家庭之電能傳送操作。對於前者,所形成之充電器,可由電網對電池充電,具有好之充電性能與入電電力品質。輸入之交流電壓可為60Hz 220V或110V。至於車輛至家庭之操作,所形成之單相三線變頻器,藉由適當之控制可輸出具良好波形品質之單相60Hz 220V/110V交流電壓。所構建永磁同步馬達驅動系統於各操作模式下之操控性能將以一些實測結果證實之。


    This thesis develops a sensorless permanent-magnet synchronous motor (PMSM) drive for electric vehicle (EV) having grid-to-vehicle and vehicle-to-home operation capabilities. The established power circuit consists of a one-lag bidirectional front-end DC/DC converter and a three-phase inverter. The former allows the battery to establish boosted DC-link voltage for the followed inverter in discharging, and to be charged from the mains or the motor during regenerative braking. All the control algorithms of both power stages are realized digitally using digital signal processor.
    In road driving mode, the properly designed standard controlled PMSM drive possesses satisfactory operation performance, including starting, acceleration, dynamic and regenerative braking characteristics. In addition, the DC-link voltage boosting, commutation instant tuning and field weakening approaches can further enhance the performance under higher speeds. To avoid making the rotor absolute position sensing, this thesis is also motivated to develop a hybrid sensorless control PMSM drive for EV propulsion. In the developed control scheme, the motor is first started under high-frequency signal injection (HFI) sensorless control. Then the operation is changed to the one applying observed extended back electromotive force (EEMF) approach. The established sensorless controlled PMSM drive possesses the compromised performance of easy to start and good operation characteristics under high speeds. The comparative experimental performance evaluation of the PMSM drive with standard and sensorless controls are also conducted.
    In idle condition, the power circuit of the developed PMSM drive can be rearranged to perform G2V and V2H operations. For the former case, an on-board charger is formed. It allows the battery be charged from mains with good charging performance and line drawn power quality. The AC line input voltage can be either 220V or 110V. As to the V2H operation, a single-phase three-wire (1P3W) inverter is constructed. The 60Hz 220V/110V AC output voltages with good waveform quality are generated from the battery via proper control. Some experimental results are provided to demonstrate the operation characteristics of the established PMSM drive under various operation modes.

    iii LIST OF CONTENTS ABSTRACT ............................................................................................................. i ACKNOWLEDGEMENT ........................................................................................ ii LIST OF CONTENTS .............................................................................................. iii LIST OF FIGURES .................................................................................................. vi LIST OF TABLES .................................................................................................... xvi CHAPTER 1 INTRODUCTION........................................................................ 1 CHAPTER 2 SOME BASIC ISSUES OF PERMANENT-MAGNET SYNCHRONOUS MOTOR DRIVES AND ELECTRIC VEHICLES…………………………………………………….. 7 2.1 Introduction .................................................................................. 7 2.2 Electric Vehicles ........................................................................... 7 2.2.1 Classifications ..................................................................... 7 2.2.2 Electric Motor Selection for HEVs ..................................... 10 2.2.3 A Typical Commercialized HEV-Toyota HEV ................... 11 2.3 Fundamentals of Permanent Magnet Synchronous Motor ........... 12 2.3.1 Structures ............................................................................ 12 2.3.2 Brushless DC Motor Operation .......................................... 13 2.3.3 Modeling of PMSM Drive .................................................. 15 2.3.4 Estimation of Key Motor Parameters .................................. 17 2.4 Some Key Issues Affecting the PMSM Driving Performance ..... 18 2.4.1 Voltage and Current Capability Limits ................................ 18 2.4.2 Commutation Instant Shift .................................................. 22 2.4.3 Field Excitation and Weakening ......................................... 24 2.4.4 Voltage Boosting ................................................................. 24 2.5 Electric Vehicle Load Torque Modeling ...................................... 27 iv CHAPTER 3 STANDARD EV PERMANENT-MAGNET SYNCHRONOUS MOTOR DRIVE .......................................................................... 29 3.1 Introduction ................................................................................ 29 3.2 System Configuration ................................................................. 29 3.3 Bidirectional Front-end DC/DC Converter .................................. 33 3.3.1 Voltage Boosting Mode ....................................................... 33 3.3.2 Buck Charging Mode .......................................................... 42 3.4 DSP-Based Standard EV PMSM Drive ....................................... 43 3.5 Experimental Performance Evaluation ........................................ 48 CHAPTER 4 POSITION SENSORLESS EV PERMANENT-MAGNET SYNCHRONOUS MOTOR DRIVE ........................................... 63 4.1 Introduction .................................................................................. 63 4.2 Some Existing PMSM Position Sensorless Control Methods ..... 63 4.3 Position Sensorless Control for PMSM Drive Based on High- Frequency Signal Injection Method ............................................. 65 4.4 Position Sensorless Control for PMSM Drive Based on Extended-EMF Observer Method ................................................ 70 4.6 The Proposed Hybrid Position Sensorless Control Method for PMSM Drive .............................................................................. 77 4.7 Acceleration and Deceleration Characteristics of Sensorless EV PMSM Drive Using HFI and EEMF Methods ............................. 77 4.8 Comparative Performance Evaluation for Three Position Sensorless Controlled EV PMSM Drives .................................... 84 CHAPTER 5 Performance Evaluation for Position Sensorless Controlled PMSM Drives with Field Weakening, Commutation Shift and Voltage Boosting Approaches ...................................................... 104 5.1 THE DEVELOPED PERMANENT-MAGNET SYNCHRONOUS MOTOR DRIVE IN G2V OPERATION ...... 112 5.2 Introduction .................................................................................. 112 5.3 Development of the Single-Phase H-bridge Boost SMR ............. 112 Development of the Three-phase Boost SMR ............................. 116 5.3.1 PLL-based Synchronization Mechanism ............................ 116 v 5.4 5.3.2 Three-phase Boost SMR ..................................................... 117 5.5 Design of the Front-end DC/DC Converter in Buck Charging Mode ............................................................................................ 121 Performance Evaluation for EV PMSM Drive in G2V Operation ...................................................................................... 125 5.5.1 Single-phase Charging System ........................................... 125 5.5.2 Three-phase Charging System ............................................ 128 CHAPTER6 THE DEVELOPED PERMANENT-MAGNET SYNCHRONOUS MOTOR DRIVE IN V2H OPERATION ...... 131 6.1 Introduction .................................................................................. 131 6.2 PWM Inverters ............................................................................. 131 6.2.1 Non-isolated Sinusoidal PWM Inverters ............................ 131 6.2.2 Power Quality...................................................................... 134 6.3 Some Possible Single-Phase Three-Wire Inverters ...................... 137 6.4 The Developed Single-phase Three-wire Inverter ....................... 139 6.4.1 Governing Equations ........................................................... 139 6.4.2 Differential Mode (220V) Control Scheme ........................ 140 6.4.3 Common Mode (110V) Control Scheme ............................ 144 6.4.4 Design of Output Filter ....................................................... 144 6.4.5 Experimental Results .......................................................... 145 CHAPTER 7 CONCLUSIONS .......................................................................... 156 REFERENCES ...................................................................................................... 158

    158
    REFERENCES
    A. Electric Vehicles
    [1] Z. Rahman, M. Ehsani and K. L. Butler, “An investigation of electric motor drive
    characteristics for EV and HEV propulsion systems,” SAE Technical Paper Series,
    2000.
    [2] J. Larminie and J. Lowry, Electric Vehicle Technology Explained. New York: John
    Wiley & Sons, Inc., 2003.
    [3] A. Emadi, K. Rajashekara, S. S. Williamson and S. M. Lukic, “Topological
    overview of hybrid electric and fuel cell vehicular power system architectures and
    configurations,” IEEE Trans. Veh. Technol., vol. 54, no. 2, pp. 736-770, 2005.
    [4] M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection
    issues for HEV propulsion systems: A comparative study,” IEEE Trans. Veh.
    Technol., vol. 55, no. 6, pp. 1756-1764, 2006.
    [5] G. Yimin and M. Ehsani, “Design and control methodology of plug-in hybrid
    electric vehicles,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 633-640, 2010.
    [6] S. G. Wirasingha and A. Emadi, “Classification and review of control strategies for
    plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp.
    111-122, 2011.
    B. Grid-to-Vehicle and Vehicle-to-Grid Operations
    [7] H. Oman, “On-board energy and power management of electric vehicles: effect of
    battery type,” in Proc. IEEE DASC, 1998, vol. 2, pp. I43/1-I43/6.
    [8] M. S. Duvall, “Battery evaluation for plug-in hybrid electric vehicles,” in Proc.
    IEEE VPPC, 2005.
    [9] A. Cooper and P. Moseley, “Progress in the development of lead-acid batteries for
    hybrid electric vehicles,” in Proc. IEEE VPPC, 2006, pp. 1-6.
    [10] M. Brandl, H. Gall, M. Wenger, V. Lorentz, M. Giegerich, F. Baronti, G. Fantechi,
    L. Fanucci, R. Roncella, R. Saletti, S. Saponara, A. Thaler, M. Cifrain and W.
    Prochazka, “Batteries and battery management systems for electric vehicles,” in
    Proc. IEEE DATE, 2012, pp. 971-976.
    [11] A. F. Burke, “Batteries and ultracapacitors for electric, hybrid and fuel cell
    vehicles,” Proc. IEEE, vol. 95, no. 4, pp. 806-820, 2007.
    [12] B. Kramer, S. Chakraborty and B. Kroposki, “A review of plug-in vehicles and
    vehicle-to-grid capability,” in Proc. IEEE IECON, 2008, pp. 2278-2283.
    [13] J. Mitra and S. Suryanarayanan, “System analytics for smart microgrids,” IEEE
    159
    Power and Eng. Soc. General Meeting, pp. 1-4, 2010.
    [14] M. C. Kisacikoglu, B. Ozpineci and L. M. Tolbert, “Effects of V2G reactive power
    compensation on the component selection in an EV or PHEV bidirectional
    charger,” in Proc. IEEE ECCE, 2010, pp. 870-876.
    [15] S. Haghbin, S Lundmark, M Alakula and O Carlson, “Grid-connected integrated
    battery chargers in vehicle applications: review and new solution,” IEEE Trans.
    Ind. Electron., to appear in vol. 99, 2012.
    C. Permanent-Magnet Synchronous Motor Drive
    Motor design
    [16] D. Zarko, D. Ban and T. A. Lipo, “Analytical calculation of magnetic field
    distribution in the slotted air gap of a surface permanent-magnet motor using
    complex relative air-gap permeance,” IEEE Trans. Magn., vol. 42, no. 7, pp.
    1828-1837, 2006.
    [17] M. Sanada and S. Morimoto, “Efficiency improvement in high speed operation
    using slot-less configuration for permanent magnet synchronous motor,” in Proc.
    IEEE Power Engineering, 2007, vol. 1, no. 1, pp. 1-7.
    [18] G. Sooriyakumar, R. Perryman and S. J. Dodds, “Cogging analysis for fractional
    slot/pole permanent magnet synchronous motors,” in Proc. UPEC, 2007, pp.
    188-191.
    [19] R. Islam, I. Husain, A. Fardoun and K. McLaughlin, “Permanent-magnet
    synchronous motor magnet designs with skewing for torque tipple and cogging
    torque reduction,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 152-160, 2009.
    [20] M. Franko, J. Ondrejicka and J. Kuchta, “Development and examination of interior
    permanent magnet synchronous traction Motor,” in Proc. ELEKTRO, 2012 pp.
    179-184.
    [21] N. Bianchi and S. Bolognani, “Sensorless-oriented design of PM motors,” IEEE
    Trans. Ind. Appl., vol. 45, no. 4, pp. 1249-1257, 2009.
    Equivalent circuit modeling and parameter estimation
    [22] P. Pillay and R. Krishnan, “Modeling, simulation and analysis of permanent
    magnet motor drives, Part I: The permanent-magnet synchronous motor drive,”
    IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 265-273, 1989.
    [23] S. Weisgerber, A. Proca and A. Keyhani, “Estimation of permanent magnet motor
    parameters,” in Proc. IEEE IAS, 1997, vol. 1, no. 1, pp. 29-34.
    [24] E. C. Lovelace, T. M. Jahns and J. H. Lang, “A saturating lumped-parameter
    160
    model for an interior PM synchronous machine”, IEEE Trans. Ind. Applicat., vol.
    38, no. 3, pp. 645-650, 2002.
    [25] A. B. Proca, A. Keyhani, A. El-Antably, L. Wenzhe and M. Dai, “Analytical
    model for permanent magnet motors with surface mounted magnets”, IEEE Trans.
    Energy Convers., vol. 18, no. 3, pp. 386-391, 2003.
    [26] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang and C. M. Huang, “Robust
    current control and commutation tuning for an IPMSM drive,” in Proc. IEEE
    APEC, 2003, vol. 2, pp. 1045-1051.
    [27] M. Kondo, “Parameter measurements for permanent magnet synchronous
    machines,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 109-117, 2007.
    Current Control
    [28] D. Y. Ohm and R. J. Oleksuk, “On practical digital current regulator design for PM
    synchronous motor drives,” in Proc. IEEE APEC, 1998, vol. 1, pp. 56-63.
    [29] M. N. Uddin, T. S. Radwan, G. H. George and M. A. Rahman, “Performance of
    current controllers for VSI-fed IPMSM drive,” IEEE Trans. Ind. Applicat., vol. 36,
    no. 6, pp. 1531-1538, 2000.
    [30] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three phase
    voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no.
    5, pp. 691-703, 1998.
    [31] B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter
    for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind.
    Electron., vol. 48, no. 5, pp. 956-967, 2001.
    [32] A. Lekshmi, R. Sankaran and S. Ushakumari, “Comparison of performance of a
    closed loop PMSM drive system with modified predictive current and hysteresis
    controllers,” in Proc. IEEE ICEMS, 2008, vol. 1, no. 1, pp. 2876-2881.
    [33] H. L. Huy, K. Slimani and P. Viarouge, “Analysis and implementation of a
    real-time predictive current controller for permanent-magnet synchronous servo
    drives,” in Proc. IEEE IAS, 1991, vol. 1, no. 28, pp. 996-1002.
    [34] H. T. Moon, H. S. Kim and M. J. Youn, “A discrete-time predictive current control
    for PMSM,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 464-472, 2003.
    [35] F. Morel, L. S. Xuefang, J. M. Retif, B. Allard and C. Buttay, “A comparative
    study of predictive current control schemes for a permanent-magnet synchronous
    machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009.
    Direct torque control
    [36] Y. A. R. I. Mohamed, “Direct instantaneous torque control in direct drive
    161
    permanent magnet synchronous motors a new approach,” IEEE Trans. Energy
    Convers., vol. 22, no. 4, pp. 829-838, 2007.
    [37] Y. Inoue, S. Morimoto and M. Sanada, “Examination and linearization of torque
    control system for direct torque controlled IPMSM,” IEEE Trans. Ind. Appl., vol.
    46, no. 1, pp. 159-166, 2010.
    Speed control
    [38] M. Nour, I. Aris, N. Mariun and S. Mahmoud, “Hybrid model reference adaptive
    speed control for vector controlled permanent magnet synchronous motor drive,”
    in Proc. IEEE PEDS, 2005, vol. 1, pp. 618-623.
    [39] Y. A. R. I. Mohamed, “Adaptive self-tuning speed control for permanent-magnet
    synchronous motor drive with dead time,” IEEE Trans. Energy Convers., vol. 21,
    no. 4, pp. 855-862, 2006.
    [40] M. M. I. Chy and M. N. Uddin, “Development and implementation of a new
    adaptive intelligent speed controller for IPMSM drive,” IEEE Trans. Ind. Appl.,
    vol. 45, no. 3, pp. 1106-1115, 2009.
    [41] C. B. Butt, M. A. Hoque and M. A. Rahman, “Simplified fuzzy-logic-based MTPA
    speed control of IPMSM drive,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp.
    1529-1535, 2004.
    [42] T. S. Radwan and M. M. Gouda, “Intelligent speed control of permanent magnet
    synchronous motor drive based on neuro-fuzzy approach,” in Proc. IEEE PEDS,
    2005, vol. 1, pp. 602-606.
    [43] T. Pajchrowski and K. Zawirski, “Robust speed and position control based on
    neural and fuzzy techniques,” in Proc. Power Electron. Appl., 2007, pp. 1-10.
    [44] A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using
    hybrid fuzzy-PI with novel switching functions,” IEEE Trans. Magn., vol. 45, no.
    10, pp. 4672-4675, 2009.
    [45] B. Singh, B. P. Singh and S. Dwivedi, “DSP based implementation of sliding mode
    speed controller for direct torque controlled PMSM drive,” in Proc. IEEE ICIT,
    2006, pp. 1301-1308.
    [46] M. Kadjoudj, A. Golea, N. Golea and M. E. Benbouzid, “Speed sliding control of
    PMSM drives,” in Proc. IEEE ISCIII, 2007, pp. 137-141.
    [47] S. Rebouh, A. Kaddouri, R. Abdessemed and A. Haddoun, “Nonlinear controller
    design for a permanent magnet synchronous motor,” in Proc. IEEE IEMDC, 2007,
    vol. 1, pp. 776-780.
    [48] S. Rebouh, A. Kaddouri, R. Abdessemed and A. Haddoun, “Nonlinear control by
    input-output linearization scheme for EV permanent magnet synchronous motor,”
    162
    in Proc. IEEE VPPC, 2007, pp. 185-190.
    Voltage boosting and pulse amplitude modulation
    [49] F. D. Kieferndorf, M. Forster and T. A. Lipo, “Reduction of DC bus capacitor
    ripple current with PAM/PWM converter,” IEEE Trans. Ind. Appl., vol. 40, no. 2,
    pp. 607-614, 2004.
    [50] W. Zhigan, G. Zhou and Y. Jianping, “Line adaptive PAM & PWM drive for
    BLDCM,” in Proc. IEEE IPEMC, 2004, vol. 3, pp. 1263-1267.
    [51] K. Taniguchi, S. Saegusa and T. Morizane, “PAM inverter system with
    soft-switching PFC converter suitable for PM motor drive,” in Proc. IEEE PEDS,
    2006, vol. 1, pp. 793-798.
    [52] A. Kawahashi, “A new-generation hybrid electric vehicle and its supporting power
    semiconductor devices,” in Proc. ISPSD, 2004, pp. 23-29.
    Field-weakening control
    [53] S. Morimoto, M. Sanada and Y. Takeda, “Wide-speed operation of interior
    permanent magnet synchronous motors with high-performance current regulator,”
    IEEE Trans. Ind. Appl., vol. 30, no. 4, pp. 920-926, 1994.
    [54] D. S. Maric, S. Hiti, C. C. Stancu and J. M. Nagashima, “Two improved flux
    weakening schemes for surface mounted permanent magnet synchronous machine
    drives employing space vector modulation,” in Proc. IECON, 1998, vol. 1, pp.
    508-512.
    [55] J. H. Song, J. M. Kim and S. K. Sul, “A new robust SPMSM control to parameter
    variations in flux weakening region,” in Proc. IECON, 1996, vol. 2, pp.1193-1198.
    [56] M. M. Swamy, T. J. Kume, A. Maemura and S. Morimoto, “Extended high-speed
    operation via electronic winding-change method for AC motors,” IEEE Trans. Ind.
    Appl., vol. 42, no. 3, pp. 742-752, 2006.
    [57] T. S. Kwon and S. K. Sul, “A novel flux weakening algorithm for surface mounted
    permanent magnet synchronous machines with infinite constant power speed
    ratio,” in Proc. IEEE ICEMS, 2007, pp. 440-445.
    [58] G. Pellegrino, E. Armando and P. Guglielmi, “Direct flux field-oriented control of
    IPM drives with variable DC link in the field-weakening region,” IEEE Trans. Ind.
    Appl., vol. 45, no. 5, pp. 1619-1627, 2009.
    D. Position Sensorless Control
    Based on the derived variables or identified parameters
    [59] M. Hinkkanen, T. Tuovinen, L. Harnefors and J. Luomi “A combined position and
    stator-resistance observer for salient PMSM drives: design and stability analysis,”
    IEEE Trans. Ind. Electron., vol. 27, no. 2, pp. 601-609, 2012.
    163
    [60] Y. Park and S. K. Sul “Novel method utilizing trapezoidal voltage to compensate
    for inverter nonlinearity,” IEEE Trans. Power Electron., vol. 27, no. 12, pp.
    4837-4846, 2012.
    [61] M. Preindl and E. Schaltz “Sensorless model predictive direct current control
    using novel second-order PLL observer for PMSM drive systems,” IEEE Trans.
    Ind. Electron., vol. 58, no. 9, pp. 4087-4095, 2012.
    [62] A. H. Wijenayake, J. M. Bailey and M. Naidu, “A DSP-based position sensor
    elimination method with on-line parameter online identification scheme for
    permanent magnet synchronous motor drives,” in Proc. IEEE IAS, 1995, vol. 1, pp.
    207-215.
    [63] S. Morimoto, M. Sanada and Y. Takeda, “Mechanical sensorless drives of IPMSM
    with online parameter identification,” in Proc. IEEE IAS, 2005, vol. 1, no.1, pp.
    297-303.
    [64] S. Ichikawa, M. Tomita, S. Doki and S. Okuma, “Sensorless control of
    permanent-magnet synchronous motors using online parameter identification
    based on system identification theory,” IEEE Trans. Ind. Electron., vol. 53, no. 2,
    pp. 363-372, 2006.
    [65] N. Matsui, “Sensorless PM brushless DC motor drives,” IEEE Trans. Ind.
    Electron., vol. 43, no. 2, pp. 300-308, 1996.
    [66] J. P. Johnson, M. Ehsani and Y. Guzelgunler, “Review of sensorless methods for
    brushless DC,” in Proc. IEEE IAS, 1999, vol. 1, pp. 143-150.
    [67] D. Montesinos, S. Galceran, F. Blaabjerg, A. Sudria and O. Gomis, “Sensorless
    control of PM synchronous motors and brushless DC motors-an overview and
    evaluation,” in European Conference on Power Electronics and Applications, 2005,
    pp. 1-10.
    [68] R. Mizutani, T. Takeshita and N. Matsui, “Current model-based sensorless drives
    of salient-pole PMSM at low speed and standstill,” IEEE Trans. Ind. Appl., vol. 34,
    no. 4, pp. 841-846, 1998
    [69] W. N. Fu and S. L. Ho, “A quantitative comparative analysis of a novel
    flux-modulated permanent-magnet motor for low-speed drive,” IEEE Trans.
    Magn., vol. 46, no. 1, pp. 127-134, 2010.
    Back-EMF methods
    [70] D. Montesinos, S. Galceran, A. Sudria, O. Gomis and F. Blaabjerg, “Low cost
    sensorless control of permanent magnet motors - an overview and evaluation,” in
    Proc. Elect. Mach. and Drives, 2005, pp. 1681-1688.
    [71] Z. Chen, M. Tomita, S. Ichikawa, S. Doki and S. Okuma, “Sensorless control of
    164
    interior permanent magnet synchronous motor by estimation of an extended
    electromotive force,” IEEE Trans. Ind. Appl., vol. 3, pp. 1814-1819, 2000.
    [72] S. Morimoto, K. Kawamoto, M. Sanada and Y. Takeda, “Sensorless control
    strategy for salient-pole PMSM based on extended EMF in rotating reference
    frame,” IEEE Trans. Ind. Appl., vol. 38, no. 4, pp. 1054-1061, 2002.
    [73] F. Genduso, R. Miceli, C. Rando and G. R. Galluzzo, “Back EMF sensorlesscontrol
    algorithm for high-dynamic performance PMSM,” IEEE Trans. Ind.
    Electron., vol. 57, no. 6, pp. 2092-2100, 2010.
    [74] B. N. Mobarakeh, F. M. Tabar and F. M. Sargos, “Back EMF estimation-based
    sensorless control of PMSM: robustness with respect to measurement errors and
    inverter irregularities,” IEEE Trans. Ind. Appl., vol. 43, no. 2, pp. 485-494, 2007.
    [75] O. Wallmark and L. Harnefors, “Sensorless control of salient PMSM drives in the
    transition region,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1179-1187, 2006.
    [76] K. Iizuka, H. Uzuhashi, M. Kano, T. Endo and K. Mohri, “Microcomputer control
    for sensorless brushless motor,” IEEE Trans. Ind. Appl., vol. IA-21, no. 3, pp.
    595-601, 1985.
    [77] G. H. Jang and M. G. Kim, “Optimal commutation of a BLDC motor by utilizing
    the symmetric terminal voltage,” IEEE Trans. Magn., vol. 42, no. 10, pp.
    3473-3475, 2006.
    [78] K. W. Lee, D. K. Kim, B. T. Kim and B. Kwon, “A novel starting method of the
    surface permanent-magnet BLDC motors without position sensor for reciprocating
    compressor,” IEEE Trans. Ind. Appl., vol. 44, no. 1, pp. 85-92, 2008.
    [79] P. Damodharan and K. Vasudevan, “Sensorless brushless DC motor drive based on
    the zero-crossing detection of back electromotive force (EMF) from the line
    voltage difference,” IEEE Trans. Energy Convers., vol. 25, no. 3, pp. 661-668,
    2010.
    Observer based methods
    [80] Z. Chen, M. Tomita, S. Doki and S. Okuma, “New adaptive sliding observers for
    position- and velocity-sensorless controls of brushless DC motors,” IEEE Trans.
    Ind. Electron., vol. 47, no. 3, pp. 582-591, 2000.
    [81] V. C. Ilioudis and N. I. Margaris, “Speed and position estimation technique for
    PMSM based on modified machine model” in Proc. OPTIM, 2010, pp. 407-415.
    [82] M. C. Huang, A. J. Moses and F. Anayi, “The comparison of sensorless estimation
    techniques for PMSM between extended Kalman filter and flux-linkage observer,”
    in Proc. IEEE APEC, 2006, vol. 2, pp. 654-659
    [83] J. Kim and S. K. Sul, “High performance PMSM drives without rotational position
    165
    sensors using reduced order observer,” in Proc. IEEE IAS, 1995, vol.1, pp. 75-82.
    [84] J. Solsona, M. I. Valla, and C. Muravchik, “A nonlinear reduced order observer for
    permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 43, no. 4,
    pp. 38-43, 1996.
    [85] A. Piippo, M. Hinkkanen and J. Luomi, “Analysis of an adaptive observer for
    sensorless control of PMSM drives,” in Proc. IEEE IECON, 2005, pp. 1474-1479.
    [86] A. Piippo, M. Hinkkanen and J. Luomi, “Analysis of an adaptive observer for
    sensorless control of interior permanent magnet synchronous motors,” IEEE Trans.
    Ind. Electron., vol. 55, no. 2, pp. 570-576, 2008.
    [87] J. Lee, J. Hong, K. Nam, R. Ortega and L. Praly, “Sensorless control of
    surface-mount permanent-magnet synchronous motors based on a nonlinear
    observer,” IEEE Trans. Power Electron., vol. 25, no. 2, pp. 290-297, 2010.
    Intelligent methods
    [88] J. Cao, B. Cao, W. Chen, P. Xu and X. Wu, “Neural network control of electric
    vehicle based on position-sensorless brushless DC motor,” in Proc. IEEE ROBIO,
    2007, pp. 1900-1905.
    [89] S. M. M. Mirtalaei, J. S. Moghani, K. Malekian and B. Abdi, “A novel sensorless
    control strategy for BLDC motor drives using a fuzzy logic-based neural network
    observer,” in Proc. IEEE SPEEDAM, 2008, vol. 2, pp. 1491-1496.
    Methods based on rotor magnet saliency
    [90] P. L. Jansen and R. D. Lorenz, “Transducerless position and velocity estimation in
    induction and salient AC machines,” IEEE Trans. Ind. Appl., vol. 31, no. 2, pp.
    240-247, 1995.
    [91] S. Ogasawara and H. Akagi, “An approach to real-time position estimation at zero
    and low speed for a PM motor based on saliency,” IEEE Trans. Ind. Appl., vol. 34,
    no. 1, pp. 163-168, 1998.
    [92] F. Briz, M. W. Degner, A. Diez and R. D. Lorenz, “Static and dynamic behavior of
    saturation-induced saliencies and their effect on carrier-signal-based sensorless AC
    drives,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 670-678, 2002.
    [93] S. Seman and J. Luomi, “Application of carrier frequency signal injection in
    sensorless control of a PMSM drive with forced dynamics,” in Proc. IEEE PEDS,
    2003, vol. 2, pp. 1663-1668.
    [94] A. Piippo, M. Hinkkanen and J. Luomi, “Sensorless control of PMSM drives using
    a combination of voltage model and HF signal injection,” in Proc. IEEE IAS, 2004,
    vol. 2, no. 2, pp. 964-970.
    166
    [95] J. H. Jang, J. I. Ha, M. Ohto, K. Ide and S. K. Sul, “Analysis of permanent-magnet
    machine for sensorless control based on high-frequency signal injection,” IEEE
    Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
    [96] J. M. Guerrero, M. Leetmaa, F. Briz, A. Zamarron and R. D. Lorenz, “Inverter
    nonlinearity effects in high-frequency signal-injection-based sensorless control
    methods,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 618-626, 2005.
    [97] Y. Jeong, R. D. Lorenz, T. M. Jahns and S. K. Sul, “Initial rotor position estimation
    of an interior permanent-magnet synchronous machine using carrier-frequency
    injection methods,” IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 38-45, 2005.
    [98] C. H. Choi and J. K. Seok, “Compensation of zero-current clamping effects in
    high-frequency signal injection based sensorless PM motor drives,” IEEE Trans.
    Ind. Appl., vol. 43, no. 5, pp. 1258-1265, 2007.
    [99] N. Bianchi, S. Bolognani, J. H. Jang and S. K. Sul, “Advantages of inset PM
    machines for zero-speed sensorless position detection,” IEEE Trans. Ind. Appl.,
    vol. 44, no. 4, pp.1190-1198, 2008.
    [100] Z. Zedong, L. Yongdong, X. Xiao and M. Fadel, “Mechanical sensorless control of
    SPMSM based on HF signal injection and Kalman filter,” in Proc. IEEE ICEMS,
    2008, pp. 1385-1390.
    [101] E. de M Fernandes, A. C. Oliveira, C. B. Jacobina and A. M. N. Lima,
    “Comparison of HF signal injection methods for sensorless control of PM
    synchronous motors,” in Proc. IEEE APEC, 2010, pp. 1984-1989.
    [102] S. Shinnaka, “A new speed-varying ellipse voltage injection method for sensorless
    drive of permanent-magnet synchronous motors with pole saliency-new PLL
    method using high-frequency current component multiplied signal,” IEEE Trans.
    Ind. Appl., vol. 44, no. 3, pp.777-788, 2008.
    [103] A. Piippo, J. Salomaki and J. Luomi, “Signal injection in sensorless PMSM drives
    equipped with inverter output filter,” IEEE Trans. Ind. Appl., vol. 44, no. 5, pp.
    1614-1620, 2008.
    [104] L. Jingbo, T. Nondahl, P. Schmidt, S. Royak and M. Harbaugh, “An on-line
    position error compensation method for sensorless IPM motor drives using high
    frequency injection,” in Proc. IEEE ECCE, 2009, pp. 1946-1953.
    [105] D. Raca, P. Garcia, D. D. Reigosa, F. Briz and R. D. Lorenz, “Carrier-signal
    selection for sensorless control of PM synchronous machines at zero and very low
    speeds,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 167-178, 2010.
    [106] G. Foo, S. Sayeef and M. F. Rahman, “Low-speed and standstill operation of a
    sensorless direct torque and flux controlled IPM synchronous motor drive,” IEEE
    167
    Trans. Energy Convers., vol. 25, no. 1, pp. 25-33, 2010.
    [107] H. W. De Kock, M. J. Kamper and R. M. Kennel, “Anisotropy comparison of
    reluctance and PM synchronous machines for position sensorless control using HF
    carrier injection,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1905-1913,
    2009.
    [108] G. D. Andreescu and C. Schlezinger, “Enhancement sensorless control system for
    PMSM drives using square-wave signal injection,” in Proc. IEEE SPEEDAM,
    2010, pp. 1508-1511.
    [109] R. Raute, C. Caruana, C. S. Staines, J. Cilia, M. Sumner and G. M. Asher,
    “Analysis and compensation of inverter nonlinearity effect on a sensorless PMSM
    drive at very low and zero speed operation,” IEEE Trans. Ind. Electron., vol. 57,
    no. 12, pp. 4065-4074, 2010.
    [110] J. H. Lee, T. W. Kong and W. C. Lee, “A new hybrid sensorless method using a
    back EMF estimator and a current model of permanent magnet synchronous
    motor” in Proc. IEEE PESC, 2008, pp. 4256-4262.
    [111] K. Ide, H. Iura and M. Inazumi, “Hybrid sensorless control of IPMSM combining
    high frequency injection method and back EMF method” in Proc. IEEE IECON,
    2010, pp. 2236-2241.
    [112] J. Bocker and C. Kroger, “Control of permanent magnet synchronous motor with
    dual-mode position estimation,” European Conf. on Power Electron. and Appl.,
    2005, pp. 1-10.
    [113] I. Hideaki, I. Masanobu, K. Takeshi and I. Kozo, “Hybrid sensorless control of
    IPMSM for direct drive applications,” in Proc. IEEE IPEC, 2010, pp. 2761-2767.
    E. PWM Inverters
    [114] Y. Lai, Y. Chang and B. Chen “Novel random switching PWM technique with
    constant sampling frequency and constant inductor average current for
    digital-controlled converter,” IEEE Trans. Ind. Electron., to appear, 2012.
    [115] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed.,
    Kluwer Academic Publishers, Norwell Massachusetts, 2001.
    [116] B. K. Bose, Modern Power Electronics and AC Drive, New Jersey: Prentice-Hall,
    2002.
    [117] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters,
    Applications and Design, New York: John Wiley & Sons, 2003.
    [118] M. H. Rashid, Power Electronics: Circuits, Devices and Applications, 3rd ed. New
    Jersey: Prentice-Hall, 2003.
    [119] P. J. M. Heskes and J. H. R. Enslin, “Power quality behavior of different
    168
    photovoltaic inverter topologies,” in Proc. PCIM, 2003, pp. 1-5.
    [120] T. Kerekes, R. Teodorescu and U. Borup, “Transformerless photovoltaic inverters
    connected to the grid,” in Proc. IEEE APEC, 2007, pp. 1733-1737.
    [121] S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,”
    IEE Proc. Electr. Power Appl., vol. 141, no. 4, pp. 197-205, 1994.
    [122] R. González, J. López, P. Sanchis and L. Marroyo, “Transformerless inverter for
    single-phase photovoltaic systems,” IEEE Trans. Power Electron., vol. 22, no. 2,
    pp. 693-697, 2007.
    [123] R. González, E. Gubia, J. Lopez and L. Marroyo, “Transformerless single-phase
    multilevel-based photovoltaic inverter,” IEEE Trans. Ind. Electron., vol. 55, no. 7,
    pp. 2694-2702, 2008.
    [124] H. Patel and V. Agarwal, “A single-stage single-phase transformer-less doubly
    grounded grid-connected PV interface,” IEEE Trans. Energy Convers., vol. 24, no.
    1, pp. 93-101, 2009.
    [125] C. Hou, C. Shih, P. Cheng and A. Hava “Common-node voltage reduction
    pulse-width modulation techniques for three-phase grid connected converters,”
    IEEE Trans. Ind. Electron., to appear, 2012.
    [126] O. Dordevic, M. Jones and E. Levi “A space vector PWM algorithm for a
    three-level seven-phase voltage source inverter,” in Proc. EPE’11, 2011, pp.1-11.
    [127] T. Kominami and Y. Fujimoto, “A novel nine-switch inverter for independent
    control of two three-phase loads,” in Proc. IEEE IAS, 2007, pp. 2346-2350.
    [128] Y. Chen and K. Smedley, “Three-phase boost-type grid-connected inverter,” IEEE
    Trans. Power Electron., vol. 23, no. 5, pp. 2301-2309, 2008.
    [129] B. Koushki, H. Khalilinia, J. Ghaisari and M. S. Nejad, “A new three-phase boost
    inverter-topology and controller,” in Proc. IEEE CCECE, 2008, pp. 757-760.
    [130] B. Koushki and J. Ghaisari “A voltage reference design for three-phase boost
    inverter,” in Proc. IEEE EURCON, 2009, pp. 650-654.
    [131] A. M. Hava and N. O. Cetin, “A generalized scalar PWM approach with easy
    implementation features for three-phase, three-wire voltage-source inverters,”
    IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1385-1395, 2011.
    F. Front-end Converters and Switch-mode Rectifiers
    [132] F. Caricchi, F. Crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional
    buck-boost converter topologies for application in electrical vehicle motor drives,”
    in Proc. IEEE APEC, 1998, vol. 1, pp. 287-293.
    [133] A. Fratta, P. Guglielmi, F. Villata and A. Vagati, “Efficiency and cost-effectiveness
    169
    of AC drives for electric vehicles improved by a novel, boost DC-DC conversion
    structure,” in Proc. IEEE Power Electron. Transp. Conf., 1998, pp. 11-19.
    [134] F. Caricchi, F. Crescimbini, G. Noia and D. Pirolo, “Experimental study of a
    bidirectional DC-DC converter for the DC link voltage control and the
    regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc.
    IEEE APEC, 1994, vol. 1, pp. 381-389.
    [135] F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a
    buck-boost bidirectional DC-DC converter topology for electrical vehicle motor
    drives,” in Proc. IEEE APEC, 1995, pp. 887-892.
    [136] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor
    correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755,
    2003.
    [137] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A
    review of single-phase improved power quality AC-DC converters,” IEEE Trans.
    Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
    [138] M. Hengchun, C. Y. Lee, D. Boroyevich and S. Hiti, “Review of high-performance
    three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44,
    no. 4, pp. 437-446, 1997.
    [139] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey and D. P. Kothari, “A
    review of three-phase improved power quality AC/DC converters,” IEEE Trans.
    Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
    G. Others
    [140] Digital signal controller TMS320F28335 data sheet,” http://www.ti.com/lit/gpn/
    tms320f28335.
    [141] J. H. Huang, “An air-conditioning system with sensorless PMSM driven
    compressor and fan with common switch-mode rectifier front-end,” M.S. thesis,
    Dept. Electric Eng., National Tsing Hua Univ., R.O.C., 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE