研究生: |
陳正岳 Chen, Cheng-Yueh |
---|---|
論文名稱: |
具電網至車輛及車輛至家庭操作能力之電動車永磁同步馬達驅動系統開發 Development of an Electric Vehicle Permanent-Magnet Synchronous Motor Drive Incorporating with Grid-to-Vehicle and Vehicle-to-Home Operation Capabilities |
指導教授: |
廖聰明
Liaw, Chang-Ming |
口試委員: |
謝欣然
廖聰明 王醴 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 169 |
中文關鍵詞: | 永磁同步馬達 、無位置感測控制 、電動車 、電池 、雙向變頻器 、速度控制 、電壓控制 、電流控制 、充電控制 、功因矯正 、電網對車輛 、車輛對家庭 |
外文關鍵詞: | permanent-magnet synchronous motor, sensorless control, electric vehicle, battery, bidirectional inverter, speed control, voltage control, current control, charging control, power factor correction, grid-to-vehicle, vehicle-to-home |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在開發一電動車無位置感測永磁同步馬達驅動系統,其兼具電網至車輛及車輛至家庭操作功能。所建馬達驅動系統之電力電路由一單臂雙向前級直流-直流轉換器及一變頻器組成。前者可於放電模式下,將蓄電池電壓提升建立較高電壓之直流鏈;以及由市電對蓄電池充電或回收馬達之在生煞車能量。兩級電力電路之所含數位控制均以一共同數位處理器實現之。
在路行馬達驅動模式下,妥善設計之標準永磁同步馬達驅動系統具有良好之操作性能,含啟動、加減速、動態及再生煞車等特性。此外,提升之直流鏈電壓、換相移位和弱磁等策略可進一步提升其於高速下之性能。避免使用偵測之轉子絕對位置,本論文亦開發一用於電動車之混合型無位置感測控制永磁同步驅動系統。於啟動及低速下,馬達先以高頻注入法操控;啟動達一定轉速後,再切換改採延伸型反電動勢無位置感測控制法。此無位置感測控制永磁同步馬達驅動系統兼具易於啟動及良好高速運轉性能。標準與無位置感測控制永磁同步馬達驅動系統之性能均以一些實測結果從事其性能比較評估。
在閒置狀態,所開發驅動系統之電力電路可重新安排以執行電網至車輛及車輛至家庭之電能傳送操作。對於前者,所形成之充電器,可由電網對電池充電,具有好之充電性能與入電電力品質。輸入之交流電壓可為60Hz 220V或110V。至於車輛至家庭之操作,所形成之單相三線變頻器,藉由適當之控制可輸出具良好波形品質之單相60Hz 220V/110V交流電壓。所構建永磁同步馬達驅動系統於各操作模式下之操控性能將以一些實測結果證實之。
This thesis develops a sensorless permanent-magnet synchronous motor (PMSM) drive for electric vehicle (EV) having grid-to-vehicle and vehicle-to-home operation capabilities. The established power circuit consists of a one-lag bidirectional front-end DC/DC converter and a three-phase inverter. The former allows the battery to establish boosted DC-link voltage for the followed inverter in discharging, and to be charged from the mains or the motor during regenerative braking. All the control algorithms of both power stages are realized digitally using digital signal processor.
In road driving mode, the properly designed standard controlled PMSM drive possesses satisfactory operation performance, including starting, acceleration, dynamic and regenerative braking characteristics. In addition, the DC-link voltage boosting, commutation instant tuning and field weakening approaches can further enhance the performance under higher speeds. To avoid making the rotor absolute position sensing, this thesis is also motivated to develop a hybrid sensorless control PMSM drive for EV propulsion. In the developed control scheme, the motor is first started under high-frequency signal injection (HFI) sensorless control. Then the operation is changed to the one applying observed extended back electromotive force (EEMF) approach. The established sensorless controlled PMSM drive possesses the compromised performance of easy to start and good operation characteristics under high speeds. The comparative experimental performance evaluation of the PMSM drive with standard and sensorless controls are also conducted.
In idle condition, the power circuit of the developed PMSM drive can be rearranged to perform G2V and V2H operations. For the former case, an on-board charger is formed. It allows the battery be charged from mains with good charging performance and line drawn power quality. The AC line input voltage can be either 220V or 110V. As to the V2H operation, a single-phase three-wire (1P3W) inverter is constructed. The 60Hz 220V/110V AC output voltages with good waveform quality are generated from the battery via proper control. Some experimental results are provided to demonstrate the operation characteristics of the established PMSM drive under various operation modes.
158
REFERENCES
A. Electric Vehicles
[1] Z. Rahman, M. Ehsani and K. L. Butler, “An investigation of electric motor drive
characteristics for EV and HEV propulsion systems,” SAE Technical Paper Series,
2000.
[2] J. Larminie and J. Lowry, Electric Vehicle Technology Explained. New York: John
Wiley & Sons, Inc., 2003.
[3] A. Emadi, K. Rajashekara, S. S. Williamson and S. M. Lukic, “Topological
overview of hybrid electric and fuel cell vehicular power system architectures and
configurations,” IEEE Trans. Veh. Technol., vol. 54, no. 2, pp. 736-770, 2005.
[4] M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection
issues for HEV propulsion systems: A comparative study,” IEEE Trans. Veh.
Technol., vol. 55, no. 6, pp. 1756-1764, 2006.
[5] G. Yimin and M. Ehsani, “Design and control methodology of plug-in hybrid
electric vehicles,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 633-640, 2010.
[6] S. G. Wirasingha and A. Emadi, “Classification and review of control strategies for
plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp.
111-122, 2011.
B. Grid-to-Vehicle and Vehicle-to-Grid Operations
[7] H. Oman, “On-board energy and power management of electric vehicles: effect of
battery type,” in Proc. IEEE DASC, 1998, vol. 2, pp. I43/1-I43/6.
[8] M. S. Duvall, “Battery evaluation for plug-in hybrid electric vehicles,” in Proc.
IEEE VPPC, 2005.
[9] A. Cooper and P. Moseley, “Progress in the development of lead-acid batteries for
hybrid electric vehicles,” in Proc. IEEE VPPC, 2006, pp. 1-6.
[10] M. Brandl, H. Gall, M. Wenger, V. Lorentz, M. Giegerich, F. Baronti, G. Fantechi,
L. Fanucci, R. Roncella, R. Saletti, S. Saponara, A. Thaler, M. Cifrain and W.
Prochazka, “Batteries and battery management systems for electric vehicles,” in
Proc. IEEE DATE, 2012, pp. 971-976.
[11] A. F. Burke, “Batteries and ultracapacitors for electric, hybrid and fuel cell
vehicles,” Proc. IEEE, vol. 95, no. 4, pp. 806-820, 2007.
[12] B. Kramer, S. Chakraborty and B. Kroposki, “A review of plug-in vehicles and
vehicle-to-grid capability,” in Proc. IEEE IECON, 2008, pp. 2278-2283.
[13] J. Mitra and S. Suryanarayanan, “System analytics for smart microgrids,” IEEE
159
Power and Eng. Soc. General Meeting, pp. 1-4, 2010.
[14] M. C. Kisacikoglu, B. Ozpineci and L. M. Tolbert, “Effects of V2G reactive power
compensation on the component selection in an EV or PHEV bidirectional
charger,” in Proc. IEEE ECCE, 2010, pp. 870-876.
[15] S. Haghbin, S Lundmark, M Alakula and O Carlson, “Grid-connected integrated
battery chargers in vehicle applications: review and new solution,” IEEE Trans.
Ind. Electron., to appear in vol. 99, 2012.
C. Permanent-Magnet Synchronous Motor Drive
Motor design
[16] D. Zarko, D. Ban and T. A. Lipo, “Analytical calculation of magnetic field
distribution in the slotted air gap of a surface permanent-magnet motor using
complex relative air-gap permeance,” IEEE Trans. Magn., vol. 42, no. 7, pp.
1828-1837, 2006.
[17] M. Sanada and S. Morimoto, “Efficiency improvement in high speed operation
using slot-less configuration for permanent magnet synchronous motor,” in Proc.
IEEE Power Engineering, 2007, vol. 1, no. 1, pp. 1-7.
[18] G. Sooriyakumar, R. Perryman and S. J. Dodds, “Cogging analysis for fractional
slot/pole permanent magnet synchronous motors,” in Proc. UPEC, 2007, pp.
188-191.
[19] R. Islam, I. Husain, A. Fardoun and K. McLaughlin, “Permanent-magnet
synchronous motor magnet designs with skewing for torque tipple and cogging
torque reduction,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 152-160, 2009.
[20] M. Franko, J. Ondrejicka and J. Kuchta, “Development and examination of interior
permanent magnet synchronous traction Motor,” in Proc. ELEKTRO, 2012 pp.
179-184.
[21] N. Bianchi and S. Bolognani, “Sensorless-oriented design of PM motors,” IEEE
Trans. Ind. Appl., vol. 45, no. 4, pp. 1249-1257, 2009.
Equivalent circuit modeling and parameter estimation
[22] P. Pillay and R. Krishnan, “Modeling, simulation and analysis of permanent
magnet motor drives, Part I: The permanent-magnet synchronous motor drive,”
IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 265-273, 1989.
[23] S. Weisgerber, A. Proca and A. Keyhani, “Estimation of permanent magnet motor
parameters,” in Proc. IEEE IAS, 1997, vol. 1, no. 1, pp. 29-34.
[24] E. C. Lovelace, T. M. Jahns and J. H. Lang, “A saturating lumped-parameter
160
model for an interior PM synchronous machine”, IEEE Trans. Ind. Applicat., vol.
38, no. 3, pp. 645-650, 2002.
[25] A. B. Proca, A. Keyhani, A. El-Antably, L. Wenzhe and M. Dai, “Analytical
model for permanent magnet motors with surface mounted magnets”, IEEE Trans.
Energy Convers., vol. 18, no. 3, pp. 386-391, 2003.
[26] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang and C. M. Huang, “Robust
current control and commutation tuning for an IPMSM drive,” in Proc. IEEE
APEC, 2003, vol. 2, pp. 1045-1051.
[27] M. Kondo, “Parameter measurements for permanent magnet synchronous
machines,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 109-117, 2007.
Current Control
[28] D. Y. Ohm and R. J. Oleksuk, “On practical digital current regulator design for PM
synchronous motor drives,” in Proc. IEEE APEC, 1998, vol. 1, pp. 56-63.
[29] M. N. Uddin, T. S. Radwan, G. H. George and M. A. Rahman, “Performance of
current controllers for VSI-fed IPMSM drive,” IEEE Trans. Ind. Applicat., vol. 36,
no. 6, pp. 1531-1538, 2000.
[30] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three phase
voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no.
5, pp. 691-703, 1998.
[31] B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter
for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind.
Electron., vol. 48, no. 5, pp. 956-967, 2001.
[32] A. Lekshmi, R. Sankaran and S. Ushakumari, “Comparison of performance of a
closed loop PMSM drive system with modified predictive current and hysteresis
controllers,” in Proc. IEEE ICEMS, 2008, vol. 1, no. 1, pp. 2876-2881.
[33] H. L. Huy, K. Slimani and P. Viarouge, “Analysis and implementation of a
real-time predictive current controller for permanent-magnet synchronous servo
drives,” in Proc. IEEE IAS, 1991, vol. 1, no. 28, pp. 996-1002.
[34] H. T. Moon, H. S. Kim and M. J. Youn, “A discrete-time predictive current control
for PMSM,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 464-472, 2003.
[35] F. Morel, L. S. Xuefang, J. M. Retif, B. Allard and C. Buttay, “A comparative
study of predictive current control schemes for a permanent-magnet synchronous
machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009.
Direct torque control
[36] Y. A. R. I. Mohamed, “Direct instantaneous torque control in direct drive
161
permanent magnet synchronous motors a new approach,” IEEE Trans. Energy
Convers., vol. 22, no. 4, pp. 829-838, 2007.
[37] Y. Inoue, S. Morimoto and M. Sanada, “Examination and linearization of torque
control system for direct torque controlled IPMSM,” IEEE Trans. Ind. Appl., vol.
46, no. 1, pp. 159-166, 2010.
Speed control
[38] M. Nour, I. Aris, N. Mariun and S. Mahmoud, “Hybrid model reference adaptive
speed control for vector controlled permanent magnet synchronous motor drive,”
in Proc. IEEE PEDS, 2005, vol. 1, pp. 618-623.
[39] Y. A. R. I. Mohamed, “Adaptive self-tuning speed control for permanent-magnet
synchronous motor drive with dead time,” IEEE Trans. Energy Convers., vol. 21,
no. 4, pp. 855-862, 2006.
[40] M. M. I. Chy and M. N. Uddin, “Development and implementation of a new
adaptive intelligent speed controller for IPMSM drive,” IEEE Trans. Ind. Appl.,
vol. 45, no. 3, pp. 1106-1115, 2009.
[41] C. B. Butt, M. A. Hoque and M. A. Rahman, “Simplified fuzzy-logic-based MTPA
speed control of IPMSM drive,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp.
1529-1535, 2004.
[42] T. S. Radwan and M. M. Gouda, “Intelligent speed control of permanent magnet
synchronous motor drive based on neuro-fuzzy approach,” in Proc. IEEE PEDS,
2005, vol. 1, pp. 602-606.
[43] T. Pajchrowski and K. Zawirski, “Robust speed and position control based on
neural and fuzzy techniques,” in Proc. Power Electron. Appl., 2007, pp. 1-10.
[44] A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using
hybrid fuzzy-PI with novel switching functions,” IEEE Trans. Magn., vol. 45, no.
10, pp. 4672-4675, 2009.
[45] B. Singh, B. P. Singh and S. Dwivedi, “DSP based implementation of sliding mode
speed controller for direct torque controlled PMSM drive,” in Proc. IEEE ICIT,
2006, pp. 1301-1308.
[46] M. Kadjoudj, A. Golea, N. Golea and M. E. Benbouzid, “Speed sliding control of
PMSM drives,” in Proc. IEEE ISCIII, 2007, pp. 137-141.
[47] S. Rebouh, A. Kaddouri, R. Abdessemed and A. Haddoun, “Nonlinear controller
design for a permanent magnet synchronous motor,” in Proc. IEEE IEMDC, 2007,
vol. 1, pp. 776-780.
[48] S. Rebouh, A. Kaddouri, R. Abdessemed and A. Haddoun, “Nonlinear control by
input-output linearization scheme for EV permanent magnet synchronous motor,”
162
in Proc. IEEE VPPC, 2007, pp. 185-190.
Voltage boosting and pulse amplitude modulation
[49] F. D. Kieferndorf, M. Forster and T. A. Lipo, “Reduction of DC bus capacitor
ripple current with PAM/PWM converter,” IEEE Trans. Ind. Appl., vol. 40, no. 2,
pp. 607-614, 2004.
[50] W. Zhigan, G. Zhou and Y. Jianping, “Line adaptive PAM & PWM drive for
BLDCM,” in Proc. IEEE IPEMC, 2004, vol. 3, pp. 1263-1267.
[51] K. Taniguchi, S. Saegusa and T. Morizane, “PAM inverter system with
soft-switching PFC converter suitable for PM motor drive,” in Proc. IEEE PEDS,
2006, vol. 1, pp. 793-798.
[52] A. Kawahashi, “A new-generation hybrid electric vehicle and its supporting power
semiconductor devices,” in Proc. ISPSD, 2004, pp. 23-29.
Field-weakening control
[53] S. Morimoto, M. Sanada and Y. Takeda, “Wide-speed operation of interior
permanent magnet synchronous motors with high-performance current regulator,”
IEEE Trans. Ind. Appl., vol. 30, no. 4, pp. 920-926, 1994.
[54] D. S. Maric, S. Hiti, C. C. Stancu and J. M. Nagashima, “Two improved flux
weakening schemes for surface mounted permanent magnet synchronous machine
drives employing space vector modulation,” in Proc. IECON, 1998, vol. 1, pp.
508-512.
[55] J. H. Song, J. M. Kim and S. K. Sul, “A new robust SPMSM control to parameter
variations in flux weakening region,” in Proc. IECON, 1996, vol. 2, pp.1193-1198.
[56] M. M. Swamy, T. J. Kume, A. Maemura and S. Morimoto, “Extended high-speed
operation via electronic winding-change method for AC motors,” IEEE Trans. Ind.
Appl., vol. 42, no. 3, pp. 742-752, 2006.
[57] T. S. Kwon and S. K. Sul, “A novel flux weakening algorithm for surface mounted
permanent magnet synchronous machines with infinite constant power speed
ratio,” in Proc. IEEE ICEMS, 2007, pp. 440-445.
[58] G. Pellegrino, E. Armando and P. Guglielmi, “Direct flux field-oriented control of
IPM drives with variable DC link in the field-weakening region,” IEEE Trans. Ind.
Appl., vol. 45, no. 5, pp. 1619-1627, 2009.
D. Position Sensorless Control
Based on the derived variables or identified parameters
[59] M. Hinkkanen, T. Tuovinen, L. Harnefors and J. Luomi “A combined position and
stator-resistance observer for salient PMSM drives: design and stability analysis,”
IEEE Trans. Ind. Electron., vol. 27, no. 2, pp. 601-609, 2012.
163
[60] Y. Park and S. K. Sul “Novel method utilizing trapezoidal voltage to compensate
for inverter nonlinearity,” IEEE Trans. Power Electron., vol. 27, no. 12, pp.
4837-4846, 2012.
[61] M. Preindl and E. Schaltz “Sensorless model predictive direct current control
using novel second-order PLL observer for PMSM drive systems,” IEEE Trans.
Ind. Electron., vol. 58, no. 9, pp. 4087-4095, 2012.
[62] A. H. Wijenayake, J. M. Bailey and M. Naidu, “A DSP-based position sensor
elimination method with on-line parameter online identification scheme for
permanent magnet synchronous motor drives,” in Proc. IEEE IAS, 1995, vol. 1, pp.
207-215.
[63] S. Morimoto, M. Sanada and Y. Takeda, “Mechanical sensorless drives of IPMSM
with online parameter identification,” in Proc. IEEE IAS, 2005, vol. 1, no.1, pp.
297-303.
[64] S. Ichikawa, M. Tomita, S. Doki and S. Okuma, “Sensorless control of
permanent-magnet synchronous motors using online parameter identification
based on system identification theory,” IEEE Trans. Ind. Electron., vol. 53, no. 2,
pp. 363-372, 2006.
[65] N. Matsui, “Sensorless PM brushless DC motor drives,” IEEE Trans. Ind.
Electron., vol. 43, no. 2, pp. 300-308, 1996.
[66] J. P. Johnson, M. Ehsani and Y. Guzelgunler, “Review of sensorless methods for
brushless DC,” in Proc. IEEE IAS, 1999, vol. 1, pp. 143-150.
[67] D. Montesinos, S. Galceran, F. Blaabjerg, A. Sudria and O. Gomis, “Sensorless
control of PM synchronous motors and brushless DC motors-an overview and
evaluation,” in European Conference on Power Electronics and Applications, 2005,
pp. 1-10.
[68] R. Mizutani, T. Takeshita and N. Matsui, “Current model-based sensorless drives
of salient-pole PMSM at low speed and standstill,” IEEE Trans. Ind. Appl., vol. 34,
no. 4, pp. 841-846, 1998
[69] W. N. Fu and S. L. Ho, “A quantitative comparative analysis of a novel
flux-modulated permanent-magnet motor for low-speed drive,” IEEE Trans.
Magn., vol. 46, no. 1, pp. 127-134, 2010.
Back-EMF methods
[70] D. Montesinos, S. Galceran, A. Sudria, O. Gomis and F. Blaabjerg, “Low cost
sensorless control of permanent magnet motors - an overview and evaluation,” in
Proc. Elect. Mach. and Drives, 2005, pp. 1681-1688.
[71] Z. Chen, M. Tomita, S. Ichikawa, S. Doki and S. Okuma, “Sensorless control of
164
interior permanent magnet synchronous motor by estimation of an extended
electromotive force,” IEEE Trans. Ind. Appl., vol. 3, pp. 1814-1819, 2000.
[72] S. Morimoto, K. Kawamoto, M. Sanada and Y. Takeda, “Sensorless control
strategy for salient-pole PMSM based on extended EMF in rotating reference
frame,” IEEE Trans. Ind. Appl., vol. 38, no. 4, pp. 1054-1061, 2002.
[73] F. Genduso, R. Miceli, C. Rando and G. R. Galluzzo, “Back EMF sensorlesscontrol
algorithm for high-dynamic performance PMSM,” IEEE Trans. Ind.
Electron., vol. 57, no. 6, pp. 2092-2100, 2010.
[74] B. N. Mobarakeh, F. M. Tabar and F. M. Sargos, “Back EMF estimation-based
sensorless control of PMSM: robustness with respect to measurement errors and
inverter irregularities,” IEEE Trans. Ind. Appl., vol. 43, no. 2, pp. 485-494, 2007.
[75] O. Wallmark and L. Harnefors, “Sensorless control of salient PMSM drives in the
transition region,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1179-1187, 2006.
[76] K. Iizuka, H. Uzuhashi, M. Kano, T. Endo and K. Mohri, “Microcomputer control
for sensorless brushless motor,” IEEE Trans. Ind. Appl., vol. IA-21, no. 3, pp.
595-601, 1985.
[77] G. H. Jang and M. G. Kim, “Optimal commutation of a BLDC motor by utilizing
the symmetric terminal voltage,” IEEE Trans. Magn., vol. 42, no. 10, pp.
3473-3475, 2006.
[78] K. W. Lee, D. K. Kim, B. T. Kim and B. Kwon, “A novel starting method of the
surface permanent-magnet BLDC motors without position sensor for reciprocating
compressor,” IEEE Trans. Ind. Appl., vol. 44, no. 1, pp. 85-92, 2008.
[79] P. Damodharan and K. Vasudevan, “Sensorless brushless DC motor drive based on
the zero-crossing detection of back electromotive force (EMF) from the line
voltage difference,” IEEE Trans. Energy Convers., vol. 25, no. 3, pp. 661-668,
2010.
Observer based methods
[80] Z. Chen, M. Tomita, S. Doki and S. Okuma, “New adaptive sliding observers for
position- and velocity-sensorless controls of brushless DC motors,” IEEE Trans.
Ind. Electron., vol. 47, no. 3, pp. 582-591, 2000.
[81] V. C. Ilioudis and N. I. Margaris, “Speed and position estimation technique for
PMSM based on modified machine model” in Proc. OPTIM, 2010, pp. 407-415.
[82] M. C. Huang, A. J. Moses and F. Anayi, “The comparison of sensorless estimation
techniques for PMSM between extended Kalman filter and flux-linkage observer,”
in Proc. IEEE APEC, 2006, vol. 2, pp. 654-659
[83] J. Kim and S. K. Sul, “High performance PMSM drives without rotational position
165
sensors using reduced order observer,” in Proc. IEEE IAS, 1995, vol.1, pp. 75-82.
[84] J. Solsona, M. I. Valla, and C. Muravchik, “A nonlinear reduced order observer for
permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 43, no. 4,
pp. 38-43, 1996.
[85] A. Piippo, M. Hinkkanen and J. Luomi, “Analysis of an adaptive observer for
sensorless control of PMSM drives,” in Proc. IEEE IECON, 2005, pp. 1474-1479.
[86] A. Piippo, M. Hinkkanen and J. Luomi, “Analysis of an adaptive observer for
sensorless control of interior permanent magnet synchronous motors,” IEEE Trans.
Ind. Electron., vol. 55, no. 2, pp. 570-576, 2008.
[87] J. Lee, J. Hong, K. Nam, R. Ortega and L. Praly, “Sensorless control of
surface-mount permanent-magnet synchronous motors based on a nonlinear
observer,” IEEE Trans. Power Electron., vol. 25, no. 2, pp. 290-297, 2010.
Intelligent methods
[88] J. Cao, B. Cao, W. Chen, P. Xu and X. Wu, “Neural network control of electric
vehicle based on position-sensorless brushless DC motor,” in Proc. IEEE ROBIO,
2007, pp. 1900-1905.
[89] S. M. M. Mirtalaei, J. S. Moghani, K. Malekian and B. Abdi, “A novel sensorless
control strategy for BLDC motor drives using a fuzzy logic-based neural network
observer,” in Proc. IEEE SPEEDAM, 2008, vol. 2, pp. 1491-1496.
Methods based on rotor magnet saliency
[90] P. L. Jansen and R. D. Lorenz, “Transducerless position and velocity estimation in
induction and salient AC machines,” IEEE Trans. Ind. Appl., vol. 31, no. 2, pp.
240-247, 1995.
[91] S. Ogasawara and H. Akagi, “An approach to real-time position estimation at zero
and low speed for a PM motor based on saliency,” IEEE Trans. Ind. Appl., vol. 34,
no. 1, pp. 163-168, 1998.
[92] F. Briz, M. W. Degner, A. Diez and R. D. Lorenz, “Static and dynamic behavior of
saturation-induced saliencies and their effect on carrier-signal-based sensorless AC
drives,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 670-678, 2002.
[93] S. Seman and J. Luomi, “Application of carrier frequency signal injection in
sensorless control of a PMSM drive with forced dynamics,” in Proc. IEEE PEDS,
2003, vol. 2, pp. 1663-1668.
[94] A. Piippo, M. Hinkkanen and J. Luomi, “Sensorless control of PMSM drives using
a combination of voltage model and HF signal injection,” in Proc. IEEE IAS, 2004,
vol. 2, no. 2, pp. 964-970.
166
[95] J. H. Jang, J. I. Ha, M. Ohto, K. Ide and S. K. Sul, “Analysis of permanent-magnet
machine for sensorless control based on high-frequency signal injection,” IEEE
Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
[96] J. M. Guerrero, M. Leetmaa, F. Briz, A. Zamarron and R. D. Lorenz, “Inverter
nonlinearity effects in high-frequency signal-injection-based sensorless control
methods,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 618-626, 2005.
[97] Y. Jeong, R. D. Lorenz, T. M. Jahns and S. K. Sul, “Initial rotor position estimation
of an interior permanent-magnet synchronous machine using carrier-frequency
injection methods,” IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 38-45, 2005.
[98] C. H. Choi and J. K. Seok, “Compensation of zero-current clamping effects in
high-frequency signal injection based sensorless PM motor drives,” IEEE Trans.
Ind. Appl., vol. 43, no. 5, pp. 1258-1265, 2007.
[99] N. Bianchi, S. Bolognani, J. H. Jang and S. K. Sul, “Advantages of inset PM
machines for zero-speed sensorless position detection,” IEEE Trans. Ind. Appl.,
vol. 44, no. 4, pp.1190-1198, 2008.
[100] Z. Zedong, L. Yongdong, X. Xiao and M. Fadel, “Mechanical sensorless control of
SPMSM based on HF signal injection and Kalman filter,” in Proc. IEEE ICEMS,
2008, pp. 1385-1390.
[101] E. de M Fernandes, A. C. Oliveira, C. B. Jacobina and A. M. N. Lima,
“Comparison of HF signal injection methods for sensorless control of PM
synchronous motors,” in Proc. IEEE APEC, 2010, pp. 1984-1989.
[102] S. Shinnaka, “A new speed-varying ellipse voltage injection method for sensorless
drive of permanent-magnet synchronous motors with pole saliency-new PLL
method using high-frequency current component multiplied signal,” IEEE Trans.
Ind. Appl., vol. 44, no. 3, pp.777-788, 2008.
[103] A. Piippo, J. Salomaki and J. Luomi, “Signal injection in sensorless PMSM drives
equipped with inverter output filter,” IEEE Trans. Ind. Appl., vol. 44, no. 5, pp.
1614-1620, 2008.
[104] L. Jingbo, T. Nondahl, P. Schmidt, S. Royak and M. Harbaugh, “An on-line
position error compensation method for sensorless IPM motor drives using high
frequency injection,” in Proc. IEEE ECCE, 2009, pp. 1946-1953.
[105] D. Raca, P. Garcia, D. D. Reigosa, F. Briz and R. D. Lorenz, “Carrier-signal
selection for sensorless control of PM synchronous machines at zero and very low
speeds,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 167-178, 2010.
[106] G. Foo, S. Sayeef and M. F. Rahman, “Low-speed and standstill operation of a
sensorless direct torque and flux controlled IPM synchronous motor drive,” IEEE
167
Trans. Energy Convers., vol. 25, no. 1, pp. 25-33, 2010.
[107] H. W. De Kock, M. J. Kamper and R. M. Kennel, “Anisotropy comparison of
reluctance and PM synchronous machines for position sensorless control using HF
carrier injection,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1905-1913,
2009.
[108] G. D. Andreescu and C. Schlezinger, “Enhancement sensorless control system for
PMSM drives using square-wave signal injection,” in Proc. IEEE SPEEDAM,
2010, pp. 1508-1511.
[109] R. Raute, C. Caruana, C. S. Staines, J. Cilia, M. Sumner and G. M. Asher,
“Analysis and compensation of inverter nonlinearity effect on a sensorless PMSM
drive at very low and zero speed operation,” IEEE Trans. Ind. Electron., vol. 57,
no. 12, pp. 4065-4074, 2010.
[110] J. H. Lee, T. W. Kong and W. C. Lee, “A new hybrid sensorless method using a
back EMF estimator and a current model of permanent magnet synchronous
motor” in Proc. IEEE PESC, 2008, pp. 4256-4262.
[111] K. Ide, H. Iura and M. Inazumi, “Hybrid sensorless control of IPMSM combining
high frequency injection method and back EMF method” in Proc. IEEE IECON,
2010, pp. 2236-2241.
[112] J. Bocker and C. Kroger, “Control of permanent magnet synchronous motor with
dual-mode position estimation,” European Conf. on Power Electron. and Appl.,
2005, pp. 1-10.
[113] I. Hideaki, I. Masanobu, K. Takeshi and I. Kozo, “Hybrid sensorless control of
IPMSM for direct drive applications,” in Proc. IEEE IPEC, 2010, pp. 2761-2767.
E. PWM Inverters
[114] Y. Lai, Y. Chang and B. Chen “Novel random switching PWM technique with
constant sampling frequency and constant inductor average current for
digital-controlled converter,” IEEE Trans. Ind. Electron., to appear, 2012.
[115] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed.,
Kluwer Academic Publishers, Norwell Massachusetts, 2001.
[116] B. K. Bose, Modern Power Electronics and AC Drive, New Jersey: Prentice-Hall,
2002.
[117] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters,
Applications and Design, New York: John Wiley & Sons, 2003.
[118] M. H. Rashid, Power Electronics: Circuits, Devices and Applications, 3rd ed. New
Jersey: Prentice-Hall, 2003.
[119] P. J. M. Heskes and J. H. R. Enslin, “Power quality behavior of different
168
photovoltaic inverter topologies,” in Proc. PCIM, 2003, pp. 1-5.
[120] T. Kerekes, R. Teodorescu and U. Borup, “Transformerless photovoltaic inverters
connected to the grid,” in Proc. IEEE APEC, 2007, pp. 1733-1737.
[121] S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,”
IEE Proc. Electr. Power Appl., vol. 141, no. 4, pp. 197-205, 1994.
[122] R. González, J. López, P. Sanchis and L. Marroyo, “Transformerless inverter for
single-phase photovoltaic systems,” IEEE Trans. Power Electron., vol. 22, no. 2,
pp. 693-697, 2007.
[123] R. González, E. Gubia, J. Lopez and L. Marroyo, “Transformerless single-phase
multilevel-based photovoltaic inverter,” IEEE Trans. Ind. Electron., vol. 55, no. 7,
pp. 2694-2702, 2008.
[124] H. Patel and V. Agarwal, “A single-stage single-phase transformer-less doubly
grounded grid-connected PV interface,” IEEE Trans. Energy Convers., vol. 24, no.
1, pp. 93-101, 2009.
[125] C. Hou, C. Shih, P. Cheng and A. Hava “Common-node voltage reduction
pulse-width modulation techniques for three-phase grid connected converters,”
IEEE Trans. Ind. Electron., to appear, 2012.
[126] O. Dordevic, M. Jones and E. Levi “A space vector PWM algorithm for a
three-level seven-phase voltage source inverter,” in Proc. EPE’11, 2011, pp.1-11.
[127] T. Kominami and Y. Fujimoto, “A novel nine-switch inverter for independent
control of two three-phase loads,” in Proc. IEEE IAS, 2007, pp. 2346-2350.
[128] Y. Chen and K. Smedley, “Three-phase boost-type grid-connected inverter,” IEEE
Trans. Power Electron., vol. 23, no. 5, pp. 2301-2309, 2008.
[129] B. Koushki, H. Khalilinia, J. Ghaisari and M. S. Nejad, “A new three-phase boost
inverter-topology and controller,” in Proc. IEEE CCECE, 2008, pp. 757-760.
[130] B. Koushki and J. Ghaisari “A voltage reference design for three-phase boost
inverter,” in Proc. IEEE EURCON, 2009, pp. 650-654.
[131] A. M. Hava and N. O. Cetin, “A generalized scalar PWM approach with easy
implementation features for three-phase, three-wire voltage-source inverters,”
IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1385-1395, 2011.
F. Front-end Converters and Switch-mode Rectifiers
[132] F. Caricchi, F. Crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional
buck-boost converter topologies for application in electrical vehicle motor drives,”
in Proc. IEEE APEC, 1998, vol. 1, pp. 287-293.
[133] A. Fratta, P. Guglielmi, F. Villata and A. Vagati, “Efficiency and cost-effectiveness
169
of AC drives for electric vehicles improved by a novel, boost DC-DC conversion
structure,” in Proc. IEEE Power Electron. Transp. Conf., 1998, pp. 11-19.
[134] F. Caricchi, F. Crescimbini, G. Noia and D. Pirolo, “Experimental study of a
bidirectional DC-DC converter for the DC link voltage control and the
regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc.
IEEE APEC, 1994, vol. 1, pp. 381-389.
[135] F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a
buck-boost bidirectional DC-DC converter topology for electrical vehicle motor
drives,” in Proc. IEEE APEC, 1995, pp. 887-892.
[136] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor
correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755,
2003.
[137] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A
review of single-phase improved power quality AC-DC converters,” IEEE Trans.
Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
[138] M. Hengchun, C. Y. Lee, D. Boroyevich and S. Hiti, “Review of high-performance
three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44,
no. 4, pp. 437-446, 1997.
[139] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey and D. P. Kothari, “A
review of three-phase improved power quality AC/DC converters,” IEEE Trans.
Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
G. Others
[140] Digital signal controller TMS320F28335 data sheet,” http://www.ti.com/lit/gpn/
tms320f28335.
[141] J. H. Huang, “An air-conditioning system with sensorless PMSM driven
compressor and fan with common switch-mode rectifier front-end,” M.S. thesis,
Dept. Electric Eng., National Tsing Hua Univ., R.O.C., 2011.