簡易檢索 / 詳目顯示

研究生: 李佳徽
Li, Chia-Hui
論文名稱: Nakagami應變複合影像於乳房超音波診斷
Strain-compounding Nakagami Imaging in Breast Ultrasound Diagnosis
指導教授: 葉秩光
Yeh, Chih-Kuang
口試委員: 王士豪
李夢麟
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 98
中文關鍵詞: 乳房超音波Nakagami參數影像應變複合法乳房腫瘤分類
外文關鍵詞: breast ultrasound, Nakagami image, strain compounding, breast tumor classification
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Nakagami參數影像可以區分組織中散射子濃度的不同,並且已被證實有助於乳房腫瘤分類。但此方法受限於單張影像所選取的腫瘤切面不同而影響分類的結果,因此本研究提出將應變複合技術應用於Nakagami影像,同時考慮多張Nakagami影像的資訊,排除單張影像可能造成的誤判,以提升乳房腫瘤分類的效能。而應變複合法已被提出應用於傳統B-scan影像,其取像原理為利用外力使散射子產生位移,因而得到不同的斑點分佈,以達到抑制斑點雜訊的效果。但實際上位移的多寡是根據組織的軟硬程度而有所不同,且會造成組織中散射子分佈的改變,因此我們可以藉由觀察連續的Nakagami影像之間散射子濃度的變化,以變化的多寡得知腫瘤的軟硬程度,最後將多張影像加以平均而得到Nakagami應變複合影像。比較Nakagami原始影像和複合影像時,可發現兩種影像之間散射子分佈的差異可用來區分不同軟硬程度的組織。而臨床上,惡性乳房腫瘤由於組織纖維增生的關係,因此較良性腫瘤硬,故我們提出將此項新的成像技術應用於乳房腫瘤分類並且利用接受器操作特性曲線(receiver operating characteristic curve, ROC curve)評估其分類效能,其中Az為0.97±0.02,準確度(accuracy)為96%,敏感度(sensitivity)為100%,特異性(specificity)則為92%。
    總括而言,Nakagami應變複合影像可藉由觀察腫瘤內部Nakagami參數變化的程度而得知腫瘤的軟硬程度,因此本研究所提出的方法,具有成為電腦輔助診斷工具幫助診斷乳房腫瘤的潛力。


    Nakagami parametric image has been used to discriminate different scatterer concentrations, and furthermore investigated to efficiently classify breast masses. However, the different scanning sections of breast lesions could cause misclassifications when only adopting one single Nakagami image. This study explored the feasibility of applying strain compounding technique to Nakagami image for considering multiple Nakagami images to reduce the diagnostic errors and improving the clinical performance in breast tumors classification. Strain compounding technique has been investigated to be useful for speckle reduction in conventional B-scan images due to scatterers redistribution caused by external compression. The external compression could cause tissue deformation which is relative to tissue stiffness and scatterers concentrations inside the breast tissue. Therefore, the continuous Nakagami images obtained by external compression could reveal the changes of scatterers concentration according to the stiffness of breast tissue and thus could be averaged to construct the strain-compounding Nakagami image. The difference of scatterers distribution between the original Nakagami image and the strain-compounding Nakagami image may be useful in distinguishing softer tissues from harder ones. In general, malignant breast tumor is harder than benign one due to desmoplastic reactions around surrounding tissues. Therefore, we propose the strain-compounding Nakagami imaging to classify breast tumors. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic performance. The area under the ROC curve was 0.97±0.02, the diagnostic accuracy was 96%, the sensitivity was 100%, and the specificity was 92%.
    In conclusion, the strain-compounding Nakagami method shows that the different degree of hardness of breast tumors can be distinguished by the changes in Nakagami parameters. Therefore, the proposed method has the potential to be a useful computer-aided diagnosis tool in the detection and characterization of the breast masses.

    第一章 緒論 1.1研究背景 1.2乳房超音波 1.3傳統電腦輔助診斷系統 (Computer Aided Diagnosis, CAD) 1.4 Nakagami統計應用於乳房超音波 1.5應變複合技術 (Strain compounding technique) 1.6論文架構 第二章 研究原理與方法 2.1資料擷取 2.1.1仿體製作 2.1.1.1彈性量測 2.1.1.2模擬腫瘤彈性之仿體 2.1.2臨床資料 2.2應變複合技術應用於B-scan影像 2.2.1 B-scan複合影像成像方法 2.2.2斑點追蹤演算法(Speckle tracking algorithm) 2.2.2.1區塊總合金字塔演算法(Block Sum Pyramid algorithm, BSP) 2.2.2.2漸層區塊比對演算法 (Multi-Level Block Matching algorithm, MLBM) 2.2.3影響應變複合技術的因素 2.3應變複合技術應用於Nakagami參數影像 2.3.1超音波Nakagami參數影像 2.3.1.1 Nakagami統計分佈原理 2.3.1.2 Nakagami參數影像成像方法 2.3.2Nakagami複合影像成像方法 2.3.3形變修正的必要性及其對封包波形之影響 第三章 實驗結果與討論 3.1仿體實驗 3.1.1應變複合技術與軟硬特性之探討 3.1.2複合影像結果與討論 3.2比較臨床原始影像和複合影像的結果 3.2.1良性乳房腫瘤 3.2.2惡性乳房腫瘤 3.3乳房腫瘤分類 3.3.1直方圖(Histogram)分析 3.3.1.1高斯分佈(Gaussian distribution)擬合曲線 3.3.1.2半高全寬(Full Width at Half Maximum, FWHM)分析 3.3.2統計分類結果與討論 3.3.2.1平均Nakagami參數分析 3.3.2.2接受器操作特性曲線(ROC curve)分析 3.3.2.3腫瘤分類結果之探討 3.4鈣化偵測 (Calcification detection) 3.4.1比較臨床原始影像和複合影像的結果 3.4.2直方圖(Histogram)分析 3.4.3統計分類結果與討論 3.4.3.1鈣化區域於複合前後影像之比值分析 3.4.3.2接受器操作特性曲線(ROC curve)分析 第四章 Nakagami複合影像應用於乳房腫瘤診斷之探討 4.1徒手壓迫方式對於Nakagami複合影像結果的影響 4.2 Nakagami複合影像之優勢 4.3 Nakagami複合影像之限制 第五章 結論與未來研究方向 5.1 結論 5.2 未來研究方向

    [1] T. M. Kolb, J. Lichy, and J. H. Newhouse, "Occult cancer in women with dense breasts: detection with screening US-diagnostic yield and tumor characteristics," Radiology, vol. 207, pp. 191-199, 1998.
    [2] R. A. Kubik-Huch, "Imaging the young breast," The Breast, vol. 15, pp. S35-S40, 2006.
    [3] 行政院衛生署, "The statistics of Department of Health."
    [4] L. Levy, M. Suissa, J.F. Chiche, G. Teman, and B. Martin, "BIRADS ultrasonography," Eur. J. Radiol., vol. 61, pp. 202-211, 2007.
    [5] S. Y. Chiou, Y. H. Chou, H. J. Chiou, H. K. Wang, C. M. Tiu, L. M. Tseng, and C. Y. Chang, "Sonographic features of nonpalpable breast cancer: a study based on ultrasound-guided wire-localized surgical biopsies," Ultrasound Med. Biol., vol. 32, pp. 1299-1306, 2006.
    [6] S. Joo, Y. S. Yang, W. K. Moon, and H. C. Kim, "Computer-aided diagnosis of solid breast nodules: Use of an artificial neural network based on multiple sonographic features," IEEE Trans. Med. Imaging, vol. 23, pp. 1292-1300, 2004.
    [7] G. E. Trahey, J. W. Allison, S. W. Smith, and O. T. von Ramm, "A quantitative approach to speckle reduction via frequency compounding," Ultrason. Imaging, vol. 8, pp. 151-164, 1986a.
    [8] P. C. Li, and M. O’Donnel, "Elevational spatial compounding," Ultrason. Imaging, vol. 16, pp. 176-198, 1994.
    [9] A. T. Stavros, D. Thickman, C. L. Rapp, M. A. Dennis, S. H. Parker, and G. A. Sisney, "Solid breast nodules: use of sonography to distinguish between benign and malignant lesions," Radiology, vol. 196, pp. 123-34, 1995.
    [10] K. G. Kim, S. W. Cho, S. J. Min, J. H. Kim, B. G. Min, and K. T. Bae, "Computerized scheme for assessing ultrasonographic features of breast masses," Acad. Radiol., vol. 12, pp. 58-66, 2005.
    [11] C. M. Chen, Y. H. Chou, K. C. Han, G. S. Hung, C. M. Tiu, H. J. Chiou, and S. Y. Chiou, "Breast lesions on sonograms: Computer-aided diagnosis with nearly setting-independent features and artificial neural networks," Radiology, vol. 226, pp. 504-514, 2003.
    [12] R. M. Haralick, K. Shanmugam, and I. Dinstein, "Textural features for image classification," IEEE Trans. Syst. Man Cybern., vol. 3, pp. 610-621, 1973.
    [13] B. C. He, and L. Wang, "Texture features based on texture spectrum," Pattern Recognit., vol. 24, pp. 391-399, 1991.
    [14] A. J. Abdulrahman, "Performance evaluation of cross-diagonal texture matrix method of texture analysis", Pattern Recognit., vol. 34, pp. 171-180, 2001.
    [15] P. M. Shankar, "A general statistical model for ultrasonic backscattering from tissues," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 47, pp. 727-736, 2000.
    [16] W. C. Holfman, "Statistical Methods in Radio Wave Propagation," 1960.
    [17] P. H. Tsui and S. H. Wang, "The effect of transducer characteristics on the estimation of Nakagami paramater as a function of scatterer concentration," Ultrasound Med. Biol., vol. 30, pp. 1345-1353, 2004.
    [18] P. M. Shankar, V. A. Dumane, J. M. Reid, V. Genis, F. Forsberg, C. W. Piccoli, and B. B. Goldberg, "Classification of ultrasonic B-mode images of breast masses using Nakagami distribution," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 48, pp. 569-580, 2001.
    [19] P. M. Shankar, V. A. Dumane, T. George, C. W. Piccoli, J. M. Reid, F. Forsberg, and B. B. Goldberg, "Classification of breast masses in ultrasonic B scans using Nakagami and K distributions," Phys. Med. Biol., vol. 48, pp. 2229-40, 2003.
    [20] P. M. Shankar, C. W. Piccoli, J. M. Reid, J. Forsberg, and B. B. Goldberg, "Application of the compound probability density function for characterization of breast masses in ultrasound B scans," Phys. Med. Biol., vol. 50, pp. 2241-2248, 2005.
    [21] P. H. Tsui, and C. C. Chang, " Imaging local scatterer concentrations by the Nakagami statistical model," Ultrasound Med. Biol., vol. 33, pp. 608-619, 2007.
    [22] P. H. Tsui, C. K. Yeh, C. C. Chang, and Y. Y. Liao, "Classification of breast masses by ultrasonic Nakagami imaging," Phys. Med. Biol., vol. 53, pp. 6027-6044, 2008a.
    [23] P. H. Tsui, C. K. Yeh, Y. Y. Liao, C. C. Chang, W. H. Kuo, K. J. Chang, and C. N. Chen, " Ultrasonic Nakagami imaging: A strategy to visualize the scatterer properties of benign and malignant breast tumors," Ultrasound Med. Biol., vol. 36, pp. 209-217, 2010.
    [24] P. C. Li, and M. J. Chen, "A new compounding approach for speckle reduction," IEEE Ultrasonics Symposium, Puerto Rico, 2000.
    [25] P. C. Li, and C. L. Wu, "Strain compounding: Spatial resolution and performance on human images," Ultrasound Med. Biol., vol. 27, pp. 1535-1541, 2001.
    [26] J. Ophir, E. I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, "Elastography : A quantitative method for imaging the elasticity of biological tissues," Ultrason. Imaging, vol. 13, pp. 111-134, 1991.
    [27] P. C. Li, and W. N. Lee, "An efficient speckle tracking algorithm for ultrasonic imaging," Ultrason. Imaging, vol. 24, pp. 215-228, 2002.
    [28] C. H. Lee, and L. H. Chen, "A fast motion estimation algorithm based on the block sum pyramid," IEEE Trans. Image Process., vol. 6, pp. 1587-1591, 1997.
    [29] F. Yeung, S. F. Levinson, and K. J. Parker, "Multilevel and motion model-based ultrasonic speckle tracking algorithms," Ultrasound Med. Biol., vol. 24, pp. 427-441, 1998.
    [30] T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, "Elastic moduli of breast and prostate tissues under compression," Ultrason. Imaging, vol. 20, pp. 260-274, 1998.
    [31] B. S. Garra, E. I. Cespedes, J. Ophir, S. R. Spratt, R. A. Zuurbier, C. M. Magnant, and M. F. Pennanen, "Elastography of breast lesions: Initial clinical results," Radiology, vol. 202, pp. 79-86, 1997.
    [32] K. M. Hiltawsky, M. Kruger, C. Starke, L. Heuser, H. Ermert, and A. Jensen, "Freehand ultrasound elastography of breast lesions: Clinical results," Ultrasound Med. Biol., vol. 27, pp. 1461-1469, 2001.
    [33] W. K. Moon, R. F. Chang, C. J. Chen, D. R. Chen, and W. L. Chen, "Solid breast masses: Classification with computer-aided analysis of continuous US images obtained with probe compression," Radiology, vol. 236, pp. 458-464, 2005.
    [34] A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, "Breast disease: Clinical application of US elastography for diagnosis," Radiology, vol. 239, pp. 341-350, 2006.
    [35] Q. L. Zhu, Y. X. Jiang, J. B. Liu, H. Liu, Q. Sun, Q. Dai, and X. Chen, "Real-time ultrasound elastography: Its potential role in assessment of breast lesions," Ultrasound Med. Biol., vol. 34, pp. 1232-1238, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE