研究生: |
劉佳蒨 Liu, Chia-Chien |
---|---|
論文名稱: |
以閘極工程改善n型鍺電晶體之電性研究 Improved Electrical Characteristics of Ge nFETs by Gate Stack Engineering |
指導教授: |
張廖貴術
ChangLiao, Kuei-Shu |
口試委員: |
趙天生
Chao, Tien-Shang 李耀仁 Lee, Yao-Jen |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 鍺 、鰭式電晶體 、微波熱處理 、高介電材料 |
外文關鍵詞: | GeMOSFET, GeFinFET, microwave annealing, high-k |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在積體電路中鍺材料被視為取代矽作為通道半導體之優選材料,但鍺材料仍有許多方面需要進行改善。例如:介面工程。本實驗利用低溫微波進行沉積後退火,並且引入額外氧原子來修復氧空缺之缺陷及鍺懸浮鍵,優化介面品質,以及探討Al2O3及Hf3N4介面層介面層及改善n+/p接面對鍺的影響。除此之外,我們也成功製作鰭式電晶體來提升電特性,及抑制短通道效應。
實驗首先對不同介面層和高介電層上進行低溫微波通氧沉積後退火做研究,文獻報導經過MTO (Microwave Thermal Oxidation, MTO)處理可降低氧化層之缺陷,而PDMTO (Postdeposition Microwave Thermal Oxidation, PDMTO)處理可減少介面缺陷。結果得知,元件經過兩次之低溫通氧氣微波退火時,不僅形成適當之GeOx厚度,亦增進HfON轉成Tetragonal phase,因結晶性提升,提高介電層之k值後,進而使EOT降低,同時擁有較佳之可靠度特性。
接下來,實驗使用穩定之Al2O3高介電保護層,來抑制在製程上所形成介面之損傷,以及擁有高熱穩定性之含氮Hf3N4介面層,分別比較Al2O3、ZrO2/Al2O3、ZrO2/Hf3N4及介面優化後之ZrO2/Hf3N4作為閘極介電層的n型鍺平面式電晶體之特性。優化閘極介電層之ZrO2/Hf3N4,電特性展現EOT為0.82 nm、ΔVfb=40 mV及閘極漏電流密度(VG=Vfb-1V)為3×10-3 A/cm^2。在電晶體方面,其展現次臨界擺幅(S.S)為137 mV/dec,及電流開關比約為6.2x10^2。在n+/p接面漏電流方面,因熱預算過高及鍺材料本身之缺陷所導致電特性較差之情形。
實驗最後為了減少製程上之熱預算,以低溫微波退火技術來活化淺接面。在nMOSFETs方面,介面優化後之閘極介電層ZrO2/Hf3N4,其EOT為0.90 nm、ΔVfb=40 mV,及閘極漏電流密度(VG=Vfb-1V)為6×10^-4 A/cm^2元件之S.S為110 mV/dec,而電流開關比約為1.5x10^3。為了增進電晶體特性,故我們使用epi-GeOI基板製作出nFinFETs,離子佈值活化完進行量測。其元件之S.S為102 mV/dec,及展現較低的閘極漏電流特性,而電流開關比約為4.1x10^4,相較於nMOSFETs之電流開關比2.7x10^1,提高約3個數量級。
Germanium is regarded as the most promising candidate of channel material, which is possible replacements for Si in n-channel FETs. However, some issues should be resolved, such as interfacial quality. In this thesis, for forming interfacial layers of high quality, postdeposition thermal oxidation was applied in O2 ambient by a microwave, which can provide extra oxygen to repair the oxygen vacancies and decrease Ge dangling bonds. Besides, the effects of the Al2O3 and Hf3N4 interfacial layers and passivation of n+/p junctions in Ge are studied. In addition, Ge nFinFETs were also fabricated to obtain better electrical characteristics and suppress the short channel effect.
First, the effects of postdeposition thermal oxidation in O2 ambient with a microwave on interfacial and high-k layers of Ge MOS devices are investigated. It was reported recently that the oxide layer traps can be reduced by MTO, the interface traps can be minimized by PDMTO. GeOx could be formed with suitable thickness by using MTO and PDMTO treatments. the high-k value of HfON can be increased due to the crystallinity enhancement of tetragonal phase. Then, both lower EOT and better reliability characteristics in Ge p-sub MOS devices are obtained.
Second, Al2O3 and Hf3N4 as interfacial layer are applied for passivating high-k gate dielectric to reduce the interface traps and obtain the high thermal stability, respectively. Gate dielectrics of Al2O3, ZrO2/Al2O3, ZrO2/Hf3N4 and optimized ZrO2/Hf3N4 on Ge nMOSFETs were investigated The results show that the Ge MOS capacitor with optimized ZrO2/Hf3N4 gate dielectric exhibits an EOT of 0.82 nm, ΔVfb of 40 mV and the lowest gate leakage density of 3×10^-3 A/cm2. Results of Ge nMOSFETs show a subthreshold swing of 137 mV/dec and on off ratio of 6.2x10^2. The electrical characteristics of Ge nMOSFETs are not good due to the n+/p junction leakage caused by the over thermal budget and intrinsic defects.
Finally, a microwave annealing with less thermal budget was utilized to activate shallow junction. The Ge nMOSFETs with optimized ZrO2/Hf3N4 gate dielectric and a microwave activation show EOT of 0.9 nm, ΔVfb of 40 mV, gate leakage density(VG=Vfb-1V) of 6×10-4 A/cm^2, S.S. of 110 mV/dec, and on-off ratio of 1.5 x10^3. In order to further enhance electrical performance, Ge nFinFETs were fabricated with epi-GOI wafer. A subthreshold swing of 102 mV/dec, low gate leakage current, and on-off ratio of 4.1x10^4 in nFinFETs without metallization are achieved. The on-off ratio of Ge nFinFETs can increase approximately 3 orders compared to that of nMOSFETs.
[1] H. Shang, H. Okorn-Schmidt, K. K. Chan, M. Copel, J. A. Ott, P. M. Kozlowski, S. E. Steen, S. A. Cordes, H.-S. P. Wong, E. C. Jones, and W. E. Haensch, “High mobility p-channel germanium MOSFETs with a thin Ge oxynitride gate dielectric,” in IEDM Tech. Dig., pp. 441–444, 2002.
[2] P. Zimmerman, G. Nicholas, B. De Jaeger, B. Kaczer, A. Stesmans, L.-A. Ragnarsson, D. P. Brunco, F. E. Leys, M. Caymax, G. Winderickx, K. Opsomer, M. Meuris, and M. M. Heyns, “High performance Ge pMOS devices using a Si-compatible process,” in IEDM Tech. Dig., pp. 655–658, 2006.
[3] D. Kuzum, A. J. Pethe, T. Krishnamohan, Y. Oshima, Y. Sun, J. P. McVittie, P. A. Pianetta, P. C. McIntyre, and K. C. Saraswat, “Interface-engineered Ge (100) and (111), n- and p-FETs with high mobility,” in IEDM Tech. Dig., pp. 723–726, 2007.
[4] S. Maikap, M.-H. Lee, S. Chang, and C. Liu, "Characteristics of strained-germanium p-and n-channel field effect transistors on a Si (1 1 1) substrate," semiconductor science and technology, vol. 22, no. 4, pp. 342-347, 2007.
[5] S. Takagi, T. Mizuno, T. Tezuka, N. Sugiyama, T. Numata,K. Usuda, Y. Moriyama, S. Nakaharai, J. Koga, A. Tanabe, N. Hirashita, and T. Maeda, ‘‘Channel Structure Design, Fabrication and Carrier Transport Properties of Strained Si/SiGe-On-Insulator (Strained-SOI) MOSFETS,’’ IEDM Tech. Digest, vol. 3, pp. 57-60, 2003.
[6] Brunco D P, et al., " Germanium MOSFET Devices: Advances in Materials Understanding, Process Development, and Electrical Performance,’’ J. Electrochem. Soc, vol. 155, no. 7, pp. H552-H561, 2008.
[7] W. P. Bai, et al., "Si Interlayer Passivation on Germanium MOS Capacitors With High-k Dielectric and Metal Gate," IEEE Transactions on Electron Devices Letters, vol. 26, no. 6, pp. 378-380, 2005.
[8] Nian Zhan, K. L. Ng , M. C. Poon, Hei Wong and C. W. Kok; “Charge Trapping and Stress-Induced Dielectric Breakdown Characteristics of HfO/sub 2/Films", IEEE Transactions on Electron Devices Letters, pp. 369-372, 2003.
[9] Chaochao Fu, Yan Wang, Peng Xu, Lei Yue, Feng Sun, David Wei Zhang, Shi-Li Zhang, Jun Luo, Chao Zhao, and Dongping Wu, ‘‘Understanding the microwave annealing of silicon,’’ Appl. Phys. Lett., vol. 7, p. 035214, 2017.
[10] Y. J. Lee, T. C. Cho, S. S. Chuang, F. K. Hsueh, Y. L. Lu, P. J. Sung, H. C. Chen, M. I. Current, T. Y. Tseng, T. S. Chao, C. Hu, and F. L, ‘‘Yang, Low-Temperature Microwave Annealing Processes for Future IC Fabrication—A Review,’’ IEEE Transactions on Electron Devices Letters, vol. 61, no. 3, pp. 651-665, 2014.
[11] S. Saito, D. Hisamoto, S. Kimura, and M. Hiratani, “Unified Mobility Model for High-K Gate Stacks”, in IEDM Tech Dig., pp. 797-800, 2003.
[12] Choong Hyun Lee, Tomonori Nishimura, Kosuke Nagashio, Koji Kita, and Akira Toriumi, ‘‘High-Electron-Mobility Ge/GeO2 n-MOSFETs With Two-Step Oxidation,’’ IEEE Transactions on Electron Devices Letters, vol. 58, no. 5, pp. 1295-1301, MAY 2011.
[13] T. Dutta, Q. Rafhay, R. Clerc, J. Lacord, S. Monfray, G. Pananakakis, F. Boeuf, G. Ghibaudo, ‘‘Impact of quantum effects on the short channel effects of III–V nMOSFETs in weak and strong inversion regimes,’’ Solid-State Electronics, vol 88, pp. 43–48, 2013.
[14] Raisul Islam, Gautam Shine, and Krishna C. Saraswat, ‘‘Schottky barrier height reduction for holes by Fermi level depinning using metal/nickel oxide/silicon contacts,’’ Appl. Phys. Lett., vol 105, p. 182103, 2014.
[15] Watling, J., ‘‘ Simulations of Sub-100 nm Strained Si MOSFETs with High-k Gate Stacks,’’ Computational Electronics, vol 3, pp. 171-176, 2005.
[16] R. I. Hegde, D. H. Triyoso, S. B. Samavedam, and B. E. White, Jr., “Hafnium Zirconate Gate Dielectric for Advanced Gate Stack Applications," J. Appl. Phys., vol. 101, no. 7, p. 074113, 2007.
[17] S. Takagi, T. Maeda, N. Taoka, M. Nishizawa, Y. Morita, K. Ikeda, Y. Yamashita, M. Nishikawa, H. Kumagai, R. Nakane, S. Sugahara and N. Sugiyama, ‘‘Gate dielectric formation and MIS interface characterization on Ge,’’ Microelectronic Engineering., vol. 84, pp. 2314–2319, 2007.
[18] Kyoung H. Kim, Roy G. Gordon, Andrew Ritenour, and Dimitri A. Antoniadis, ‘‘Atomic layer deposition of insulating nitride interfacial layers for germanium metaloxide semiconductor field effect transistors with high- oxide/tungsten nitride gatestacks,’’ Appl. Phys. Lett., vol. 90, p. 212104, 2007.
[19] Yukio Fukuda, Yohei Otani, Tetsuya Sato, Hiroshi Toyota, and Toshiro Ono, ‘‘Effects of postdeposition annealing ambient on hysteresis in an Al2O3/GeO2 gatedielectric stack on Ge,’’ Appl. Phys. Lett., vol. 110, p. 026108, 2011.
[20] S. V. Jagadeesh Chandra, Myung-Il Jeong, Yun-Chang Park, Jong-Won Yoon and Chel-Jong Choi, ‘‘Effect of Annealing Ambient on Structural and Electrical Properties of Ge Metal-Oxide-Semiconductor Capacitors with Pt Gate Electrode and HfO2 Gate Dielectric,’’ Materials Transactions, vol. 52, no. 1, pp. 118-123, 2011.
[21] Rui Zhang, Po-Chin Huang, Ju-Chin Lin, Noriyuki Taoka, Mitsuru Takenaka, Member, IEEE, and Shinichi Takagi, ‘‘ High-Mobility Ge p- and n-MOSFETs With 0.7-nm EOT Using HfO2/Al2O3/GeOx/Ge Gate Stacks Fabricated by Plasma Postoxidation,’’ IEEE Transactions On Electron Devices, vol. 60, no. 3, pp. 927-934, MARCH 2013.
[22] Chung-Chun Hsu, Wei-Chun Chi, Yi-He Tsai, Ming-Li Tsai, Shin-Yuan Wang, Chen-Han Chou, Jun Lin Zhang, Guang-Li Luo, and Chao-Hsin Chien, ‘‘Integration of microwave-annealed oxidation on germanium metal oxidesemiconductor devices,’’ Journal of Vacuum Science & Technology B, vol. 36, no. 5, p. 051204, 2018.
[23] Lixing Zhou, Xiaolei Wang, Xueli Ma, Kai Han, Yanrong Wang, Jinjuan Xiang,
Hong Yang, Jing Zhang, Chao Zhao, Tianchun Ye, and Wenwu Wang, ‘‘Comprehensive investigation of the interfacial charges and dipole in GeOx/Al2O3 gate stacks of Ge MOS capacitor by postdeposition annealing,’’ Japanese Journal of Applied Physics, vol. 57, no. 10, p. 101101, 2018.
[24] Duygu Kuzum, Tejas Krishnamohan, Aneesh Nainani, Yun Sun, Piero A. Pianetta and H.-S. Philip Wong, "High-mobility Ge N-MOSFETs and mobility degradation mechanisms," IEEE Transactions on Electron Devices, vol. 58, no. 1, pp. 59-66, 2011.
[25] Fei Gao, S. J. Lee, J. S. Pan, L. J. Tang, and Dim-Lee Kwong, "Surface passivation using ultrathin AlNx film for Ge–metal–oxide–semiconductor devices with hafnium oxide gate dielectric, " Appl. Phys. Lett., vol. 86, p. 1113501, 2005.
[26] R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka, and S. Takagi, “Al2O3/GeOx/Ge gate stacks with low interface trap density fabricated by electron cyclotron resonance plasma postoxidation,” Appl. Phys. Lett., vol. 98, no. 11, p. 112902, MARCH. 2011.
[27] H. Shang, M. M. Frank, E. P. Gusev, J. O. Chu, S. W. Bedell, K. W. Guarini and M. Ieong, "Germanium channel MOSFETs: Opportunities and challenges," IBM J. RES. & DEV., vol. 50, no. 4/5, JULY/SEPTEMBER 2006.
[28] Yao-Jen Lee, Bo-An Tsai, Chiung-Hui Lai, Zheng-Yao Chen, Fu-Kuo Hsueh, Po-Jung Sung, Michael I. Current, and Chih-Wei Luo, "Low-Temperature Microwave Annealing for MOSFETs With High-k/Metal Gate Stacks," IEEE Transactions on Electron Devices, vol. 34, no. 10, pp. 1286-1288, OCTOBER 2013
[29] Yao-Jen Lee, Shang-Shiun Chuang, Fu-Kuo Hsueh, Ho-Ming Lin, Shich-Chuang Wu, Ching-Yi Wu, and Tseung-Yuen Tseng, " Dopant Activation in Single-Crystalline Germanium by Low-Temperature Microwave Annealing," IEEE Transactions on Electron Devices, vol. 32, no. 2, pp. 194-196, FEBRUARY 2011.
[30] Yu-Lin Chao and Jason C. S. Woo, "Germanium n+/p Diodes: A Dilemma Between Shallow Junction Formation and Reverse Leakage Current Control," IEEE Transactions on Electron Devices, vol. 57, no. 3, pp. 665-670, MARCH 2010.
[31] M. S. Carroll and R. Koudelka, “Accurate modeling of average phosphorus diffusivities in germanium after long thermal anneals: Evidence of implant damage enhanced diffusivities,” Semicond. Sci. Technol., vol. 22, no. 1, pp. S164–S167, JANUARY. 2007.