簡易檢索 / 詳目顯示

研究生: 林逸群
Yi-Chun Lin
論文名稱: 靜電驅動之微懸臂樑疲勞特性研究
Fatigue of an Electrostatically Driven Microcantilever Beam
指導教授: 賀陳弘
Hong Hocheng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2004
畢業學年度: 93
語文別: 英文
論文頁數: 87
中文關鍵詞: 微懸臂樑疲勞多晶矽靜電驅動材料性質機械性質
外文關鍵詞: Microcantilever Beam, Fatigue, Mechanical Properties, Electrostatic Force, Reliability
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著微機電技術日漸成熟,逐漸商品化的同時,對微觀元件的機械性質之重要性也隨之提高,以期達到壽命長、可靠度高的目標。材料之機械性質在巨觀世界中已經為所研究,但在微小尺度下,其機械疲勞特性,需要進一步的分析與量測,以達到產品高可靠度、高品質的水準。本論文主要探討在微機電系統中被廣泛運用的結構-多晶矽微懸臂樑的疲勞性質。運用微機電製程技術發展出重製性高、容易製造之試片,以靜電驅動的方式使懸臂樑產生震動,研究其壽命與破斷強度,分析其疲勞現象,建構起不同尺寸形狀下所對應之疲勞曲線(S-N diagram),進而瞭解多晶矽之材料疲勞性質,以提供日後學者與設計者參考。本疲勞研究之試件結構為一懸臂樑(長60-100μm,寬20μm,厚度2μm),其自由端連結一靜電平板(面積500×500及560×560μm^2,厚度2μm),在電壓150及200 V,頻率100 Hz數位波之靜電場下產生均勻的靜電負載施加於試件上,並以雷射都普勒儀紀錄其位移量。由實驗與ANSYS之分析模擬結果,可以得知懸臂樑自由端之變形量會隨著結構長度增長或平板面積增加而上升,其值介於61.3–597.8 nm;試件之疲勞壽命則與固定端之最大應力值呈現近似線性反比之趨勢。固定端之最大應力值介於14.3–32.0 MPa;疲勞壽命則介於6.1×10^6–1.4×10^8 cycles。


    With advancement of MEMS technology, the reliability of a microstructure has become a vital issue before a microdevice is widely accepted. Consequently, it is indispensable to understand the mechanical properties of a microstructure to meet the requirements of longer lifetime and reliable performance. This study investigates the fatigue characteristics of a microcantiliever beam (60-120μm long, 20μm wide, 2μm thick), one of the most common microstructures widely employed in sensors and actuators. Furthermore, a pad (500×500×2 and 560×560×2μm3 ), fabricated at the free end of the beam, is used for larger external electrostatic load generated between the specimen and the electrode with an air gap 525μm. In fatigue test, the specimen actuated by the applied voltage 150 and 200 V in the form of the digital wave at 100 Hz. The deflection of the beam is measured by the laser Doppler vibrometer. According to the experimental and ANSYS results, the displacement of the free end of the beam increases with the beam length, ranging from 61.3 to 597.8 nm; from S-N diagram, the maximum stress is inversely proportional to the corresponding fatigue life. The maximum stress occurs at the fixed end of the specimen between 14.3–32.0 MPa; the fatigue life lies between 6.1×10^6–1.4×10^8 cycles.

    FIGURE CAPTIONS III TABLE CAPTIONS VIII NOMENCLATURE IX Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Background 2 1.3 Objective 5 Chapter 2 Literature Reviews 7 2.1 Fabrication Techniques 7 2.2 Measurement of Mechanical Properties 9 2.2.1 Tensile Test 10 2.2.2 Bending Test 14 2.2.3 Fatigue Test 16 Chapter 3 Predictions of Fatigue Behavior 24 3.1 Beam Analysis 24 3.2 Fatigue Theory 31 3.3 ANSYS Simulation 35 Chapter 4 Experiment 37 4.1 Specimen Preparation 37 4.1.1 Selection of Material and Fabrication Method 37 4.1.2 Design of the Specimen 38 4.1.3 Fabrication Process 42 4.1.4 Specimen Structure 48 4.2 Measurement 51 Chapter 5 Results and Discussions 56 5.1 Specimen Resonance 56 5.2 Neck Deflection 58 5.3 Maximum Beam Stress and Neck Stress 66 5.4 Fatigue Test 73 Chapter 6 Conclusions and Suggestions for Future Research 78 6.1 Conclusions 78 6.2 Suggestions for Future Research 79 Reference 81 Appendix 85

    1. K. P. Larsen, A. A. Rasmussen, J. T. Ravnkilde, M. Ginnerup, and O. Hansen, MEMS Device for Bending Test: Measurements of Fatigue and Creep of Electroplated Nickel, Sensors and Actuators A, Vol. 103, pp. 156-164, 2003.
    2. T. Tsuchiya, O. Tabata, J. Sakata, and Y. Taga, Specimen Size Effect on Tensile Strength of Surface-Micromachined Polycrystalline Silicon Thin Films, Journal of Microelectromechanical Systems, Vol. 7, No. 1, pp. 106-113, March 1998.
    3. M. A. Haque and M. T. A. Saif, Microscale Materials Testing Using MEMS Actuators, Journal of Microelectromechanical Systems, Vol. 10, No. 1, pp. 146-152, March 2001.
    4. G. T. Mearnini and R. W. Hoffman, Tensile Properties of Aluminum/Alumina Multi-layered Thin Films, Journal of Electronics Materials, Vol. 22, No. 6, pp. 623-629, 1993.
    5. T. C. Yi, L. Li, and C. J. Kim, Microscale Material Testing of Single Crystalline Silicon: Process Effects on Surface Morphology and Tensile Strength, Sensors and Actuators, Vol. 83, pp. 172-178, 2000.
    6. Jones P. T., Johnson G. C. and Howe R. T., Micromechanical Structures for Fracture Testing of Brittle Thin Films Proc. MEMS, DSC-Volume 59, ASME Int. Mechanical Engineering Congress and Exposition, Atlanta, GA, pp. 325-330, November 1996.
    7. T. Yi and C. J. Kim, Measurement of Mechanical Properties for MEMS Materials, Measurement Science and Technology, Vol. 10, pp. 706-716, 1999.
    8. C. J. Wilson, A. Ormeggi, and M. Narbutovskih, Fracture Testing of Silicon Microcantilever Beams, Journal of Applied Physics, 79 (5), pp. 2386-2393, 1 March 1996.
    9. C. L. Muhlstein, S. B. Brown, and R. O. Ritchie, High-Cycle Fatigue of Single-Crystal Silicon Thin Films, Journal of Microelectromechanal Systems, Vol. 10, No. 4, pp. 593-600, December 2001.
    10. R. Schwaiger and O. Kraft, Size Effect in the Fatigue Behavior of Thin Ag Films, Acta Materialia, No. 51, pp. 195-206, 2003.
    11. T. Ando, M. Shikida, and K. Sato, Tensile-Mode Fatigue Testing of Silicon Films as Structural Materials for MEMS, Sensors and Actuators A, Vol. 93, pp. 70-75, 2001.
    12. X. D. Li and B. Bhushan, Fatigue Studies of Nanoscale Structure for MEMS/NEMS Applications Using Nanoindentation Techniques, Surface and Coatings Technology, Vol. 163-164, pp. 521-526, 2003.
    13. C. L. Muhlstein, S. B. Brown, and R. O. Ritchie, High-Cycle Fatigue and Durability of Polycrystalline Silicon Thin Films in Ambient Air, Sensor and Actuator A, Vol. 94, pp. 177-188, 2001.
    14. O. Kraft, R. Schwaiger, and P. Wellner, Fatigue in Thin Films: Lifetime and Damage Formation, Materials Science and Engineering A, Vol. 319-321, pp. 919-923, 2001.
    15. R. Schwaiger and O. Kraft, Size Effects in the Fatigue Behavior of Thin Ag Films, Acta Materialia, Vol. 51, pp. 195-206, 2003.
    16. W. N. Sharpe Jr. and J. Bagdahn, Fatigue Testing of Polysilicon-a Review, Mechanics of Materials, Vol. 36, pp. 3-11, 2004.
    17. K. S. Kao, Investigation of Fatigue of a Microcantilever Component, Master Thesis of Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan, June 2003.
    18. G. T. A. Kovacs, Micromachined Transducers Sourcebook, McGraw-Hill, 1998.
    19. C. T. Gibson, B. L. Weeks, and C. Abell, Calibration of AFM Cantilever Spring Constants, Ultramicroscopy, Vol. 97, pp. 113-118, 2003.
    20. E. Thielicke and E. Obermeier, Microactuators and Their Technologies, Mechatronics, Vol. 10, pp. 431-455, 2000.
    21. X. M. Zhang, F. S. Chau, C. Quan, Y. L. Lam, and A. Q. Liu, A Study of the Static Characteristics of a Torsional Micromirror, Sensors and Actuators A, Vol. 90, pp. 73-81, 2001.
    22. I. Schiele, J. Huber, B. Hillerich, F. Kozlowski, Surface-Micromachined Electostatic Microrelay, Sensors and Actuators A, Vol. 66, pp. 345-354, 1998.
    23. K. E. Petersen, Dynamic Micromechanics on Silicon: Techniques and Devices, IEEE Transactions on Electron Devices, Vol. ED-25, No. 10, pp. 1247-1250, October 1978.
    24. G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, Nadim I. Maluf, and Kurt E. Petersen, Bulk Micromachining of Silicon, Proceedings of the IEEE, Vol. 86, No. 8, August 1998.
    25. J. E. Shigley and C. R. Mischke, Mechanical Engineering Design, 5th Edition, McGraw-Hill, 1989.
    26. Gere and Timoshenko, Mechanics of Materials, 4th Edition, International Thomson Publishing Inc., 1997.
    27. K. E. Petersen, Silicon as a Mechanical Material, Proceedings of the IEEE, Vol. 70, No. 5, pp. 420-457, 1982.
    28. W Fang and J. A. Wickert, Determining Mean and Gradient Residual Stresses in Thin Films Using Micromachined Cantilevers, Journal of Micromechanics and Microengineering, Vol. 6, pp. 301-309, 1996.
    29. N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg, and M. Elwenspoek, Stiction in Surface Micromachining, Journal of Micromechanics and Microengineering, Vol. 6, pp. 385-397, 1996.
    30. K. R. Williams and R. S. Muller, Etch Rates for Micromachining Processing, Journal of Microelectromechanical Systems, Vol. 5, No. 4, pp. 256-269, December 1996.
    31. M. Madou, Fundamentals of Microfabrication, CRC, 1997.
    32. M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa, Differences in Anisotropic Etching Properties of KOH and TMAH Solutions, Sensors and Actuators, Vol. 80, pp. 179-188, 2000.
    33. E. Steinsland, T. Finstad, and A. Hanneborg, Etch Rates of (100), (111) and (110) Single-Crystal Silicon in TMAH Measured in situ by Laser Reflectance Interferometry, Sensors and Actuators, Vol. 86, pp. 73-80, 2000.
    34. P. H. Chen, H. Y. Peng, C. M. Hsieh, M. K. Chyu, The Characteristic Behavior of TMAH Water Solution for Anisotropic Etching on Both Silicon Substrate and SiO2 Layer, Sensors and Actuators, Vol. 93, pp. 132-137, 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE