簡易檢索 / 詳目顯示

研究生: 王弘奕
Wang, Hong-Yi
論文名稱: 關於希爾伯特-布魯蒙索t-模的同源性
On isogenies of Hilbert-Blumenthal t-modules
指導教授: 魏福村
Wei, Fu-Tsun
口試委員: 于靖
Yu, Jing
張介玉
Chang, Chieh-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 41
中文關鍵詞: t-動機希爾伯特-布魯蒙索t-模同源
外文關鍵詞: t-motives, Hilbert-Blumenthal t-module, isogenies
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們回顧海斯[1]關於德林費爾德模的理論並藉由符號正規化德林費爾德模的直和構造出一個希爾伯特-布魯蒙索t-模的簡單例子rho^K。我們用t-動機去描述透過「理想作用」在rho^K得到的同源,並且提供一個例子說明理想作用在rho^K的同構類並不會有簡單可遞性。


    In this thesis, we review Hayes' theory [1] of Drinfeld modules and construct a simple case of Hilbert-Blumenthal $t$-module rho^K by the direct sum of sgn-normalized Drinfeld modules. We use the language of $t$-motives to describe the general notion of the isogenies of rho^K coming from ``ideal actions" and give an example to show that the ideal action on the isomorphism classes of rho^K may not be simply transitive.

    Abstract Introduction-------------------1 Preliminaries------------------5 Main result--------------------15 Appendices---------------------31 References---------------------41

    1. Greg W Anderson. t-motives. Duke Mathematical Journal, 53(2):457–502, 1986.
    2. W. Dale Brownawell, Chieh-Yu Chang, Matthew A. Papanikolas, and Fu-Tsun Wei. Function field analogue of shimura’s conjecture on period symbols. preprint.
    3. David Goss. Basic Structures of Function Field Arithmetic. Springer, Berlin, Heidelberg, 1998.
    4. David R Hayes. Explicit class field theory in global function fields. Studies in algebra and number theory, 6:173–217, 1979.
    5. Heider, Franz-Peter, Schmithals, and Bodo. Zur kapitulation der idealklassen in unverzweigten primzyklischen erweiterungen. Journal für die reine und angewandte Mathematik, 336:1–25, 1982.
    6. J.S. Milne. Algebraic Number Theory. J.S. Milne, 2008.
    7. Michael Rosen. Number theory in function fields, volume 210. Springer Science & Business Media, 2002.
    8. Jing Yu. Transcendence and Drinfeld modules: several variables. Duke Mathematical Journal, 58(3):559 – 575, 1989.

    QR CODE