簡易檢索 / 詳目顯示

研究生: 黃世佑
Huang,Shih-Yu
論文名稱: 聚苯乙烯-聚左旋乳酸共聚物之自組裝網狀微結構與其取向自組裝行為探討
Self-Assembled Nanonetwork Phases from Polystyrene-b-Poly(L-lactide) and Its Directed Self-Assembly
指導教授: 何榮銘
Ho,Rong-Ming
口試委員: 李明昌
Lee,Ming-Chang M.
李明家
Li,Ming-Chia
李育德
Lee,Yu-Der
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 62
中文關鍵詞: 嵌段共聚物取向自組裝聚苯乙烯-聚左旋乳酸共聚物奈米薄膜
外文關鍵詞: Ordered bicontinuous double diamond, Polystyrene-b-Poly(L-lactide), nanostructured thin film
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用可降解的嵌段共聚物製備奈米微結構薄膜,由於具有結構的特性,在各領域的應用研究上獲得高度關注。如何達到嵌段共聚物薄膜微結構之有序性與定向性為實際應用的關鍵。本研究擬利用有機合成的方法合成具特殊結構之雙嵌段共聚物,並結合微影製程製備具有高低差的奈米圖案基材,透過取向自組裝(directed self-assembly)的方式,以溶劑回火(solvent annealing)的方法將具有網狀微結構之雙嵌段共聚物-聚苯乙烯聚左旋乳酸共聚物(polystyrene-b -poly(L-lactide), PS-PLLA),進行奈米網狀微結構薄膜之製備。所製備之網狀微結構除具有三節點網狀結構 (double gyroid),亦發現具有四節點之網狀微結構 (ordered bicontinuous double diamond),於高溫時將進行相行為的轉變,推論此四節點的網狀結構為介穩定相。利用所製備之奈米圖案基材,針對上述合成之網狀微結構進行取向自組裝,將可依共聚物有序化之成核成長機制,以奈米圖案側壁與角落為成核點,引導聚苯乙烯聚左旋乳酸共聚物自界面進行排整,促使此奈米網狀微結構形成大規模有序排整,而利用在基材上接枝方法的不同,則能有效控制網狀結構之定向性。最後,經溼式的水解或是乾式的反應性離子蝕刻(Reactive ions etching)方式,可有效將其聚左旋乳酸移除,而得到大規模排整之高有序且具有特殊定向性之多孔聚苯乙烯薄膜。


    Block copolymers (BCPs) have been extensively studied because of their ability to self-assemble into various ordered nanostructures, such as lamellae, body-center cubic spheres, hexagonally packed cylinders, double gyroid, or even ordered bicontinuous double diamond, resulting from the incompatibility of their constituted blocks and the constrain of chemical junction. Among those nanostructured phases, network phases always receive intensive attention because of their unique geometry and continuous texture. For such a nanostructured material to prove useful in applications, thin-film samples with oriented nanostructures must be formed. Different approaches to control the ordering of BCP thin films have been reported. One of the most effective ways is to integrate top-down and bottom-up methods.
    In this study, we aim to systematically examine the phase behavior of a chiral block copolymer system, polystyrene-b-poly(L-lactide) (PS-PLLA), in particular with the volume fraction of PLLA ranging from 0.35 to 0.40 at which stable network phases are expected to be found. Interestingly, in contrast to conventional three-fold double gyroid, a four-fold network phase OBDD (ordered bicontinuous double diamond) can be found, as evidenced by small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The formation of the OBDD reflects the releasing of packing frustration from the chiral segment with higher persistent length. For practical applications, we aim to examine the feasibility to control orientation of forming network phases using topographic patterns fabricated by a distinctive lithographic approach. With well development of the lithographic approach, topographic nanopatterns with hundreds nanometer trenches in different textures possessing sharp sidewall and uniform bottom surface can be fabricated. Subsequently, directed self-assembly (DSA) of gyroid-structured PS-PLLA is carried out using the fabricated topographic nanopatterns as graphoepitaxial pattern to create gyroid-structured thin films with controlled orientation. Most interestingly, the ordering process by DSA follows a nucleation and growth mechanism at which the (211)G plane of the double gyroid texture will be the preferred growth plane to be initiated from the sidewall of the trench, eventually giving the well-ordered double gyroid texture with controlled orientation at which the (211)G plane is the surface plane from the air and the (111)G plane will be on the sidewall of the trench. In the end, the nanostructured thin films can be developed as topographic nanopatterns by removal of the PLLA segments through dry and wet etching process, providing a unique patterns for lithographic applications.

    Content Abstract I Content III List of Figures V Chapter 1 Introduction 1 1.1 Self-Assembly of Block Copolymers (BCPs). 1 1.2 Network Phases in BCP Self-Assembly 3 1.3 Metastability of Self-Assembled Phases 7 1.3.1 Order−Order Transition from H* to DG in PS−PLLA 8 1.3.2 Order−Order Transition from OBDD to DG in PP−PS 11 1.4 Controlled Orientation of Nanostructured BCP Thin Films 12 1.4.1 Oriented nanostructured thin films from BCP self-assembly. 13 1.4.2 Surface-Induced Orientation. 13 1.4.3 Solvent-Annealing-Induced Orientation. 14 1.5 Directed Self-Assembly. 16 1.6 Nucleation and Growth of BCP Microphase Separation 18 1.6.1 Homogeneous Nucleation of Self-Assembling Block Copolymers 19 1.6.2Heterogeneous Nucleation of Self-Assembling Block Copolymers 22 Chapter 2 Objectives 24 Chapter 3 Experimental Methods 27 3.1 Experimental Section 27 3.2 Instrumentation 27 Chapter 4 Results and Discussion 29 4.1 Syntheses of PS-PLLA 29 4.1.1 Synthesis and Characterization of Double-Headed Initiator 29 4.1.2 Synthesis and Characterization of PS-OH 30 4.1.3 Synthesis and Characterization of Nanonetwork Phases from PS-PLLA 31 4.1.4 Self-Assembled Phases from PS-PLLA 33 4.2 Directed Self-Assembly of Gyroid-Structured PS-PLLA 37 4.2.1 Inducing Gyroid Morphology by Solvent Annealing 38 4.2.2 Topographic Patterned Substrate Fabricated by Lithography 41 4.2.3 Graphoepitaxy of Gyroid Forming PS-PLLA 45 4.2.4 Nucleation and Growth by Topographic Pre-patterned Substrate 46 4.2.5 Morphology Induced by Different Pre-patterned Substrate 51 Chapter 5 Conclusions and Perspectives 53 References 55

    1. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
    2. Philip, D.; Stoddart, J. F. Angew. Chem. Int. Ed. 1996, 35, 1155.
    3. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. J. Am. Chem. Soc. 2001, 123, 7677.
    4. Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Phys. Rev. Lett. 1990, 65, 3013.
    5. Whitesides, G. M.; Ismagilov, R. F. Science 1999, 284, 89.
    6. Bate, F. S.; Fredrickson, G. H.; Annu. Rev. Phys. Chem. 1990, 41, 525.
    7. Park, C.; Yoon, J.; Thomas, E. L. Polymer, 2003, 44, 6725.
    8. Muthukumar M.; Ober C. K.; Thomas E. L. Science 1997, 277, 1225.
    9. Lodge, T. P. Macromol. Chem. Phys. 2003, 204, 265.
    10. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
    11. Gast, A. P.; Hall, C. K.; Russel, W. B. J Colloid Interface Sci 1983, 96, 251.
    12. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
    13. Fasolka, M.; Mayes, A. M. Ann. Rev. Mater. Res. 2001, 31, 323.
    14. Zheng, W.; Wang, Z, -G. Macromolecules 1995, 28, 7215.
    15. Abetz, V.; Supramolecular polymers. New York: Marcel Dekker, 2000. Chapter 6.
    16. Hashimoto, T.; Tsutsumi, K.; Funaki, Y. Langmuir 1997, 13, 6869.
    17. Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
    18. Matsen, M. W.; Schick, M. Phys. Rev. Lett. 1994, 72, 2660.
    19. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
    20. (a) Martin-Moreno, L.; Garcia-Vidal, F. J.; Somoza, A. M. Phys. Rev. Lett. 1999, 83, 73. (b) Milhaupt, J. M.; Lodge, T. P. J. Polym. Sci. Part B: Polym. Phys. 2001, 39, 843. (c) Adachi, M.; Okumura, A.; Sivaniah, E.; Hashimoto, T. Macromolecules 2006, 39, 6352.
    21. (a) Hajduk, D. A.; Takenouchi, H.; Hillmyer, M. A.; Bates, F. S.; Vigild, M. E.; Almdal, K. Macromolecules 1997, 30, 3788. (b) Hajduk, D. A.; Ho, R.-M.; Hillmyer, M. A.; Bates, F. S.; Almdal, K. J. Phys. Chem. B 1998, 102, 1356.
    22. Jinnai, H.; Hasegawa, H.; Nishikawa, Y.; Sevink, G. J. A.; Braunfeld, M. B.; Agard, D. A.; Spontak, R. J. Macromol. Rapid Commun. 2006, 27, 1424.
    23. (a) Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K. Phys. Rev. Lett. 1994, 73, 86. (b) Forster, S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W. Macromolecules 1994, 27, 6922. (c) Wang, C. Y.; Lodge, T. P. Macromolecules 2002, 35, 6997. (d) Wang, C. Y.; Lodge, T. P. Macromol. Rapid Commun. 2002, 23, 49.
    24. (a) Sakurai, S.; Umeda, H.; Furukawa, C.; Irie, H.; Nomura, S.; Lee, H. H.; Kim, J. K. J. Chem. Phys. 1998, 108, 4333. (b) Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Mai, S.-M.; Booth, C. Phys. Chem. Chem. Phys. 1999, 1, 2097.
    25. Alward, D. B.; Kinning, D. J.; Thomas, E. L.; Fetters, L. J. Macromolecules 1986, 19, 21.
    26. Hasegawa, H.; Tanaka, H.; Yamasaki, K.; Hashimoto, T. Macromolecules 1987, 20, 1651.
    27. Anderson, D. M.; Thomas, E. L. Macromolecules 1988, 21, 3221.
    28. Luzzati, V.; Spegt, P. A. Nature 1967, 215, 701.
    29. Schoen, A. H. NASA TN D-5541, 1970.
    30. Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Fetters, L. J. Macromolecules 1994, 27, 4063.
    31. Ho, R. M.; Chiang, Y. W.; Tsai, C. C.; Lin, C. C.; Ko, B. T.; Huang, B. H. JACS 2004, 126, 9.
    32. Hashimoto, T.; Chen, H. L.; Chu, C. Y.; Lin, W. F.; Tsai, J. C.; Lai, C. S.; Lo, S. C. Macromolecules 2011, 45, 2414.
    33. Ho, R. M.; Wang, X. B.; Lo, T. Y.; Hsueh, H. Y. Macromolecules 2013,46, 2997.
    34. Ho, R. M.; Wang, H. F.; Yu, L. H.; Wang, X. B. Macromolecules 2014,47,7993
    35. Leibler, L. Macromolecules 1980, 13, 1602.
    36. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091.
    37. Cochran, E. W.; Garcia-Cervera, C. J.; Fredrickson, G. H. Macromolecules 2006, 39, 2449.
    38. Kim, J. K.; Lee, J. I.; Lee, D. H. Macromol. Res. 2008, 16, 267.
    39. Park, S.; Lee, D. H.; Xu, J.; Kim, B.; Hong, S. W.; Jeong, U.; Xu, T.; Russell, T. P. Science 2009, 323, 1030.
    40. Hamley, I. W. Prog. Polym. Sci. 2009, 34, 1161.
    41. Matsen, M. W. J. Chem. Phys. 1997, 106, 7781.
    42. Lee, B.; Park, I.; Yoon, J.; Park, S.; Kim, J.; Kim, K. W.; Chang,T.; Ree, M. Macromolecules 2005, 38, 4311.
    43. Park, I.; Lee, B.; Ryu, J.; Im, K.; Yoon, J.; Ree, M.; Chang, T. Macromolecules 2005, 38, 10532.
    44. Park, H. W.; Im, K.; Chung, B.; Ree, M.; Chang, T.; Sawa, K.; Jinnai, H. Macromolecules 2007, 40, 2603.
    45. Park, H. W.; Jung, J.; Chang, T. Macromol. Res. 2009, 17, 365.
    46. Lyakhova, K. S.; Sevink, G. J. A.; Zvelindovsky, A. V.; Horvat, A.; Magerle, R. J. Chem. Phys. 2004, 120, 1127.
    47. Olszowka, V.; Tsarkova, L.; Boker, A. Soft Matter 2009, 5, 812.
    48. Huang, E.; Russell, T. P.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Hawker, C. J.; Mays, J. Macromolecules 1998, 31, 7641.
    49. Xu, T.; Hawker, C. J.; Russell, T. P. Macromolecules 2005, 38, 2802.
    50. Ryu, D. Y.; Wang, J. Y.; Lavery, K. A.; Drockenmuller, E.; Satija, S. K.; Hawker, C. J.; Russell, T. P. Macromolecules 2007, 40, 4296.
    51. Ham, S.; Shin, C.; Kim, E.; Ryu, D. Y.; Jeong, U.; Russell, T. P.; Hawker, C. J. Macromolecules 2008, 41, 6431.
    52. Albert, J. N. L.; Baney, M. J.; Stafford, C. M.; Kelly, J. Y.; Epps, T. H. G; ACS Nano 2009, 3, 3977.
    53. Ramanathan, M.; Nettleton, E.; Darling, S. B. Thin Solid Films 2009, 517, 4474.
    54. Russell, T. P.; Coulon, G.; Deline, V. R.; Miller, D. C. Macromolecules 1989, 22, 4600.
    55. Han, E.; Stuen, K. O.; Leolukman, M.; Liu, C. C.; Nealey, P. F.; Gopalan P. Macromolecules 2009, 42, 4896.
    56. Han, E.; Stuen, K. O.; La, Y. H.; Nealey, P. F.; Gopalan, p Macromolecules 2008, 41, 9090.
    57. Mansky, P.; Russell, T. P.; Hawker, C. J.; Pitsikalis, M.; Mays, J., Macromolecules 1997, 30, 6810.
    58. Shin, C.; Ahn, H. ; Kim, E.; Ryu, D. Y.; Huh, J.; Kim, K. W. Russell, T. P. Macromolecules 2008, 41, 9140.
    59. Fasolka, M. J., and Mayes, A. M., Annu. Rev. Mater. Res. 2001, 31, 323.
    60. Mansky, P.; Russell, T. P.; Hawker, C. J.; Mays, J.; Cook, D. C.; Satija, S. K. Phys. Rev. Lett. 1997, 79, 237.
    61. Xuan, Y.; Peng, J.; Cui, L.; Wang, H. F.; Li, B. Y.; Han, Y. C. Macromolecules 2004, 37, 7301.
    62. Segalman, R. A., Mater. Sci. Eng. R Rep. 2005, 48, 191.
    63. Smith, A. P.; Douglas, J. F.; Meredith, J. C.; Amis, E. J.; Karim, A. Phys. Rev. Lett. 2001, 87, 015503.
    64. Niihara, K. I.; Sugimori, H.; Matsuwaki, U.; Hirato, F.; Morita, H.; Doi, M.; Masunaga, H.; Sasaki, S.; Jinnai, H. Macromolecules 2008, 41, 9318.
    65. Knoll, A.; Horvat, A.; Lyakhova, K. S.; Krausch, G.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R. Phys.Rev.Lett. 2002, 89, 035501.
    66. Hashimoto, T.; Bodycomb, J.; Funaki Y.; Kimishima, K. Macromolecules 1999, 32, 952.
    67. Mita, K.; Takenaka, M.; Hasegawa, H.; Hashimoto, T. Macromolecules 2008, 41, 8789.
    68. Morkved, T. L.; Lu, M.; Urbas, A. M.; Ehrichs, E. E.; Jaeger, H. M.; Mansky, P.; Russell, T. P. Science 1996, 273, 931.
    69. Thurn-Albrecht, T.; Schotter, J.; Ka¨stle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell T. P. Science 2000, 290, 2126.
    70. Olszowka, V.; Hund, M.; Kuntermann, V.; Scherdel, S.; Tsarkova, L.; Boker, A. ACS Nano 2009, 3, 1091.
    71. De Rosa, C.; Park, C.; Thomas, E. L.; Lotz, B. Nature 2000, 405, 433.
    72. Ho, R. M.; Hsieh, P. Y.; Tseng, W. H.; Lin, C. C.; Huang B. H.; Lotz, B. Macromolecules 2003, 36, 9085.
    73. Park, Y. J.; Kang, S. J.; Lotz, B.; Brinkmann, M.; Thierry, A.; Kim, K. J.; Park, C. Macromolecules 2008, 41, 8648.
    74. Keller, A.; Pedemonte E.; Willmouth, F. M. Nature 1970, 225, 385.
    75. Albalak, R. J.; Thomas, E. L. J. Polym. Sci., Part B: Polym. Phys. 1993, 31, 37.
    76. Koppi, K. A.; Tirrell M.; Bates, F. S. Phys. Rev. Lett. 1993, 70, 1449.
    77. Chen, Z. R.; Kornfield, J. A.; Smith, S. D.; Grothaus, J. T.; Satkowski, M. M. Science 1997, 277, 1248.
    78. Albalak, R. J.; Capel, M. S.; Thomas E. L. Polymer 1997, 39, 1647.
    79. Angelescu, D. E.; Waller, J. H.; Register, R. A.; Chaikin, P. M. Adv. Mater. 2005, 17, 1878.
    80. Hong, Y. R.; Adamson, D. H.; Chaikin, P. M.; Register, R. A. Soft Matter 2009, 5, 1687.
    81. Peters, R. D.; Yang, X. M.; Kim, T. K.; Nealey, P. F. Langmuir 2000, 16, 9620.
    82. Peters, R. D.; Yang, X. M.; Kim, T. K.; Sohn, B. H.; Nealey, P. F. Langmuir 2000, 16, 4625.
    83. Han, E.; In, I.; Park, S. M.; La, Y. H.; Wang, Y.; Nealey, P. F.; Gopalan, P. Adv. Mater. 2007, 19, 4448.
    84. Suh, H. S.; Kang, H.; Liu, C. C.; Nealey, P. F.; Char, K. Macromolecules 2010, 43, 461.
    85. Mansky, P.; Liu, Y.; Huang, E.; Russell, T. P.; Hawker, C. J. Science 1997, 275, 1458.
    86. Huang, E.; Rockford, L.; Russell T. P.; Hawker, C. J. Nature 1998, 395, 757.
    87. Ryu, D. Y.; Shin, K.; Drockenmuller, E.; Hawker, C. J.; Russell, T. P. Science 2005, 308, 236.
    88. Shengxiang J.; Guoliang L.; Zheng F.; Craig, G. S. W.; Himpsel, F. J.; Nealey, P. F. Adv. Mater. 2008, 20, 3054.
    89. Gu, W.; Hong, S. W.; Russell, T. P. ACS Nano 2012, 6, 10250.
    90. Kim, G.; Libera, M. Macromolecules 1998, 31, 2569.
    91. Kim, S. H.; Misner, M. J.; Xu, T.; Kimura, M.; S. H., Russell, T. P. Adv. Mater. 2004, 16, 226.
    92. Kim, S. H; Misner, M. J.; Russell, T. P. Adv. Mater. 2004, 16, 2119.
    93. Knoll, A.; Magerle, R.; Krausch, G. J. Chem. Phys. 2004, 120, 1105.
    94. Cavicchi, K. A.; Russell, T. P. Macromolecules 2007, 40, 1181.
    95. Park, S.; Wang, J. Y.; Kim, B.; Chen, W.; Russell, T. P. Macromolecules 2007, 40, 9059.
    96. Park, S.; Kim, B.; Xu J.; Hofmann, T.; Ocko B. M.; Russell, T. P. Macromolecules 2009, 42, 1278.
    97. Paik, M. Y.; Bosworth, J. K.; Smilges, D. M.; Schwartz, E. L. Andre, X.; Ober, C. K. Macromolecules, 2010, 43, 4253.
    98. Gotrik, K. W.; Hannon, A. F.; Son, J. G.; Keller, B.; Alexander-Katz, A.; Ross, C. A. ACS Nano 2012, 6, 8052.
    99. Cheng, J. Y.; Ross, C. A.; Smith, H. I.; Thomas, E. L. Adv. Mater. 2006, 18, 2505
    100. Segalman, R. A.; Yokoyama, H.; Kramer, E. J. Adv. Mater. 2001, 13, 1152.
    101. Cheng, J. Y.; Ross, C. A.; Thomas, E. L.; Smith, H. I.; Vancso, G. J. Appl. Phys. Lett. 2002, 81, 3657.
    102. Cheng, J. Y.; Ross, C. A.; Thomas, E. L.; Smith, H. I.; Vancso, G. J. Adv. Mater. 2003, 15, 1599.
    103. Sundrani, D.; Darling, S. B.; Sibener, S. J. Nano Lett. 2004, 4, 273.
    104. Sundrani, D.; Darling, S. B.; Sibener, S. J. Langmuir 2004, 20, 5091.
    105. Jung, Y. S.; Ross, C. A. Nano Lett. 2007, 7, 2046.
    106. Jung, Y. S.; Ross, C. A. Adv. Mater. 2009, 21, 2540.
    107. Jung, Y. S.; Jung, W. C.; Tuller, H. L.; Ross, C. A. Nano Lett. 2008, 8, 3776.
    108. Jung, Y. S.; Jung, W.; Ross, C. A. Nano Lett. 2008, 8, 2975.
    109. Rockford, L.; Mansky, Y. L. P.; Russell, T. P.; Yoon, M.; Mochrie S. G. J. Phys. Rev. Lett. 1999, 82, 2602.
    110. Kim, S. O.; Solak, H. H.; Stoykovich, M. P.; Ferrier, N. J.; de Pablo, J. J.; Nealey, P. F. Nature 2003, 424, 411.
    111. Edwards, E. W.; Montague, M. F.; Solak, H. H.; Hawker, C. J.; Nealey, P. F. Adv. Mater. 2004, 16, 1315
    112. Stoykovich, M. P.; Muller, M.; Kim, S. O.; Solak, H. H.; Edwards, E. W.; de Pablo, J. J.; Nealey, P. F. Science 2005, 308, 1442.
    113. Iyoda, T.; Komura, M.; Komiyama, H.; Nagai, K. Macromolecules 2013, 46, 9013.
    114. Shi, A. C.; Deng, H.; Xie, N.; Li, W.; Qiu, F. Macromolecules 2015, 48, 4174.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE