研究生: |
廖祐祥 Liao, Yu-Hsiang |
---|---|
論文名稱: |
鉑-磁鐵礦啞鈴型奈米粒子的製備、特性鑑定及在多巴胺檢測上的應用 Pt-Fe3O4 Dumbbell-like Nanoparticles: Synthesis, Characterization, and Application to Dopamine Detection |
指導教授: |
董瑞安
Doong, Ruey-an |
口試委員: |
孫毓璋
吳希天 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 多巴胺 、生物感測器 、啞鈴形奈米粒子 |
外文關鍵詞: | Dopamine, Biosensor, Dumbbell nanoparticle |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用不同粒徑鉑奈米粒子結合磁鐵礦來製備鉑-磁鐵礦啞鈴型複合奈米粒子。利用Pt(acac)2作為鉑的前驅物以油胺作為還原劑,調控加熱溫度從140-180ºC及還原劑的劑量分別得到顆粒大小為3、6、13 nm的鉑奈米粒子。將Pt分散在Fe3O4的前驅物油酸鐵中,藉由調控油酸鐵及Pt的比例分別得到3、6、13 nm的Pt-Fe3O4啞鈴型奈米粒子。本研究同時也利用TEM、XRD、TGA、ICP-AES、SQUID對Pt及Pt-Fe3O4進行表面特性鑑定。電化學特性上,Pt-Fe3O4具有較佳電子轉移能力,將Pt及Pt-Fe3O4結合石墨電極組成安培式電化學感測器, 3、6、及13 nm Pt對多巴胺的線性範圍分別為20-850、15-850、35-850 µM,Pt-Fe3O4分別為15-850、20-850、10-850 □M,3、6、及13 nm Pt偵測極限分別為7.49、7.36、8 □M,Pt-Fe3O4分別為7.22、6.14、0.13 □M。Pt-Fe3O4表現出比Pt強的電流值訊號及相同的線性範圍並有較低之偵測極限,在應用上有較好的潛力。
In this study, the dumbbell-like Pt-Fe3O4 nanoparticle was prepared by using Pt nanoparticle with different sizes as the seeding nanoparticles. The 3, 6, and 13 nm of Pt nanoparticles were obtained by using Pt(acac)2 and oleylamine as the precursor and reducing agent, respectively. In addition, the different sizes of PT nanoparticles can be obtained by controlling the amount of reducing agent and synthesisis temperature from 140-180ºC. Using different sizes of Pt nanoparticles in the presence of iron-oleate, the different sizes of dumbbell-like Pt-Fe3O4 nanoparticle were successfully fabricated by tuning the ratios of Pt and iron-oleate. The synthesized Pt and Pt-Fe3O4 were characterized by TEM, XRD, TGA, ICP-AES, SQUID. The Pt showed better electron transfer ability. Pt and Pt-Fe3O4 were dispersed on graphite electrode to fabricate the amperomertic biosensor for sensing dopamine,the Pt-Fe3O4 electrode is linearly dependence on dopamine concentration in the range of 20-850,15-850 and 35-850 □M receptively , and the Pt-Fe3O4 electrode were 15-850,25-850,10-850 □M receptively. The detection limits of Pt were 7.49,7.36 and 8 □M receptively, and Pt-Fe3O4 were 7.22,6.14 and 0.13 □M receptively. In addition, the Pt-Fe3O4 shows better current value of signal intensity , linear range and more lower detection limits when compared Pt nanoparticles, clearly showing the application potential on biosensing and catalytic activity.
1. Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H., Dumbbell-like bifunctional Au- Fe3O4 nanoparticles. Nano Letters 2005, 5, (2), 379-382.
2. Jiang, J.; Gu, H. W.; Shao, H. L.; Devlin, E.; Papaefthymiou, G. C.; Ying, J. Y., Manipulation Bifunctional Fe3O4-Ag Heterodimer Nanoparticles for Two-Photon Fluorescence Imaging and Magnetic Manipulation. Advanced Materials 2008, 20, (23), 4403-4407.
3. Wei, Q.; Xiang, Z.; He, J.; Wang, G. L.; Li, H.; Qian, Z. Y.; Yang, M. H., Dumbbell-like Au- Fe3O4 nanoparticles as label for the preparation of electrochemical immunosensors. Biosensors & Bioelectronics 2010, 26, (2), 627-631.
4. Wang, C.; Daimon, H.; Sun, S. H., Dumbbell-like Pt- Fe3O4 Nanoparticles and Their Enhanced Catalysis for Oxygen Reduction Reaction. Nano Letters 2009, 9, (4), 1493-1496.
5. Kan, X. W.; Geng, Z. R.; Zhao, Y.; Wang, Z. L.; Zhu, J. J., Magnetic molecularly imprinted polymer for aspirin recognition and controlled release. Nanotechnology 2009, 20, (16), -.
6. Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B., Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nature Materials 2008, 7, (4), 333-338.
7. Li, Z. Q.; Zhang, Y.; Jiang, S., Multicolor Core/Shell-Structured Upconversion Fluorescent Nanoparticles. Advanced Materials 2008, 20, (24), 4765-+.
8. Lai, C. W.; Wang, Y. H.; Lai, C. H.; Yang, M. J.; Chen, C. Y.; Chou, P. T.; Chan, C. S.; Chi, Y.; Chen, Y. C.; Hsiao, J. K., Iridium-complex-functionalized Fe3O4/SiO2 core/shell nanoparticles: A facile three-in-one system in magnetic resonance imaging, luminescence imaging, and photodynamic therapy. Small 2008, 4, (2), 218-224.
9. Tsai, S. H.; Liu, Y. H.; Wu, P. L.; Yeh, C. S., Preparation of Au-Ag-Pd trimetallic nanoparticles and their application as catalysts. Journal of Materials Chemistry 2003, 13, (5), 978-980.
10. Xu, C.; Xie, J.; Ho, D.; Wang, C.; Kohler, N.; Walsh, E. G.; Morgan, J. R.; Chin, Y. E.; Sun, S., Au-Fe3O4 dumbbell nanoparticles as dual-functional probes. Angewandte Chemie-International Edition 2008, 47, (1), 173-176.
11. Mamidala, V.; Xing, G. C.; Ji, W., Surface Plasmon Enhanced Third-Order Nonlinear Optical Effects in Ag- Fe3O4 Nanocomposites. Journal of Physical Chemistry C 2010, 114, (51), 22466-22471.
12. Jang, Y.; Chung, J.; Kim, S.; Jun, S. W.; Kim, B. H.; Lee, D. W.; Kim, B. M.; Hyeon, T., Simple synthesis of Pd- Fe3O4 heterodimer nanocrystals and their application as a magnetically recyclable catalyst for Suzuki cross-coupling reactions. Physical Chemistry Chemical Physics 2011, 13, (7), 2512-2516.
13. Zhang, L.; Dou, Y. H.; Gu, H. C., Synthesis of Ag- Fe3O4 heterodimeric nanoparticles. Journal of Colloid and Interface Science 2006, 297, (2), 660-664.
14. Shi, W. L.; Sahoo, Y.; Zeng, H.; Ding, Y.; Swihart, M. T.; Prasad, P. N., Anisotropic growth of PbSe nanocrystals on Au- Fe3O4 hybrid nanoparticles. Advanced Materials 2006, 18, (14), 1889-+.
15. Wang, C.; Wei, Y. J.; Jiang, H. Y.; Sun, S. H., Tug-of-War in Nanoparticles: Competitive Growth of Au on Au- Fe3O4 Nanoparticles. Nano Letters 2009, 9, (12), 4544-4547.
16. Lopes, G.; Vargas, J. M.; Sharma, S. K.; Beron, F.; Pirota, K. R.; Knobel, M.; Rettori, C.; Zysler, R. D., Ag- Fe3O4 Dimer Colloidal Nanoparticles: Synthesis and Enhancement of Magnetic Properties. Journal of Physical Chemistry C 2010, 114, (22), 10148-10152.
17. Yeung, C. M. Y.; Yu, K. M. K.; Fu, Q. J.; Thompsett, D.; Petch, M. I.; Tsang, S. C., Engineering Pt in ceria for a maximum metal-support interaction in catalysis. Journal of the American Chemical Society 2005, 127, (51), 18010-18011.
18. Nevado, C.; Ferrer, C.; Echavarren, A. M., New annulations via platinum-catalyzed enyne cyclization and cyclopropane cleavage. Organic Letters 2004, 6, (18), 3191-3194.
19. Kusama, H.; Funami, H.; Shido, M.; Hara, Y.; Takaya, J.; Iwasawa, N., Generation and reaction of tungsten-containing carbonyl ylides: [3+2]-cycloaddition reaction with electron-rich alkenes. Journal of the American Chemical Society 2005, 127, (8), 2709-2716.
20. Oh, C. H.; Lee, J. H.; Lee, S. J.; Kim, J. I.; Hong, C. S., Intramolecular Huisgen-type cyclization of platinum-bound pyrylium ions with alkenes and subsequent insertion into a benzylic C-H bond. Angewandte Chemie-International Edition 2008, 47, (39), 7505-7507.
21. Lee, J.; Park, H.; Choi, W., Selective photocatalytic oxidation of NH3 to N-2 on plantation TiO2 in water. Environmental Science & Technology 2002, 36, (24), 5462-5468.
22. Yu, J. J.; Yu, D. L.; Zhao, T.; Zeng, B. Z., Development of amperometric glucose biosensor through immobilizing enzyme in a Pt nanoparticles/mesoporous carbon matrix. Talanta 2008, 74, (5), 1586-1591.
23. Chakraborty, S.; Raj, C. R., Pt nanoparticle-based highly sensitive platform for the enzyme-free amperometric sensing of H2O2. Biosensors & Bioelectronics 2009, 24, (11), 3264-3268.
24. Dey, R. S.; Raj, C. R., Development of an Amperometric Cholesterol Biosensor Based on Graphene-Pt Nanoparticle Hybrid Material. Journal of Physical Chemistry C 2010, 114, (49), 21427-21433.
25. Jiang, X. Y.; Wu, Y. H.; Mao, X. Y.; Cui, X. J.; Zhu, L. D., Amperometric glucose biosensor based on integration of glucose oxidase with platinum nanoparticles/ordered mesoporous carbon nanocomposite. Sensors and Actuators B-Chemical 2011, 153, (1), 158-163.
26. Shukla, N.; Nigra, M. M.; Bartel, M. A.; Nuhfer, T.; Phatak, C.; Gellman, A. J., Angle Resolved TEM Imaging of Pt Nanoparticles. Catalysis Letters 2010, 140, (3-4), 85-89.
27. Hahakura, S.; Isoda, S.; Ogawa, T.; Moriguchi, S.; Kobayashi, T., Formation of ultrafine platinum particles in an aqueous solution with a surfactant. Journal of Crystal Growth 2002, 237, 1942-1945.
28. Fojtik, A.; Henglein, A., Laser Ablation of Films and Suspended Particles in a Solvent - Formation of Cluster and Colloid Solutions. Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 1993, 97, (2), 252-254.
29. Mafune, F.; Kohno, J. Y.; Takeda, Y.; Kondow, T., Formation of stable platinum nanoparticles by laser ablation in water. Journal of Physical Chemistry B 2003, 107, (18), 4218-4223.
30. Lehninger, A. L.; Nelson, D. L.; Cox, M. M., Lehninger principles of biochemistry. 5th ed.; W.H. Freeman: New York, 2008.
31. Hu, X. B.; Li, G. T.; Li, M. H.; Huang, J.; Li, Y.; Gao, Y. B.; Zhang, Y. H., Ultrasensitive specific stimulant assay based on molecularly imprinted photonic hydrogels. Advanced Functional Materials 2008, 18, (4), 575-583.
32. Hu, X. B.; Li, G. T.; Huang, J.; Zhang, D.; Qiu, Y., Construction of self-reporting specific chemical sensors with high sensitivity. Advanced Materials 2007, 19, (24), 4327-+.
33. Wu, Z.; Tao, C. A.; Lin, C. X.; Shen, D. Z.; Li, G. T., Label-Free Colorimetric Detection of Trace Atrazine in Aqueous Solution by Using Molecularly Imprinted Photonic Polymers. Chemistry-a European Journal 2008, 14, (36), 11358-11368.
34. Wu, Z.; Hu, X. B.; Tao, C. A.; Li, Y.; Liu, J.; Yang, C. D.; Shen, D. Z.; Li, G. T., Direct and label-free detection of cholic acid based on molecularly imprinted photonic hydrogels. Journal of Materials Chemistry 2008, 18, (45), 5452-5458.
35. Freeman, R.; Li, Y.; Tel-Vered, R.; Sharon, E.; Elbaz, J.; Willner, I., Self-assembly of supramolecular aptamer structures for optical or electrochemical sensing. Analyst 2009, 134, (4), 653-656.
36. He, Y. Q.; Zhang, S. Q.; Zhang, X. B.; Baloda, M.; Gurung, A. S.; Xu, H.; Zhang, X. J.; Liu, G. D., Ultrasensitive nucleic acid biosensor based on enzyme-gold nanoparticle dual label and lateral flow strip biosensor. Biosensors & Bioelectronics 2011, 26, (5), 2018-2024.
37. Fan, M. K.; Thompson, M.; Andrade, M. L.; Brolo, A. G., Silver Nanoparticles on a Plastic Platform for Localized Surface Plasmon Resonance Biosensing. Analytical Chemistry 2010, 82, (15), 6350-6352.
38. Bizet, K.; Gabrielli, C.; Perrot, H., Biosensors based on piezoelectric transducers. Analusis 1999, 27, (7), 609-616.
39. Ogi, H.; Naga, H.; Fukunishi, Y.; Hirao, M.; Nishiyama, M., 170-MHz Electrodeless Quartz Crystal Microbalance Biosensor: Capability and Limitation of Higher Frequency Measurement. Analytical Chemistry 2009, 81, (19), 8068-8073.
40. Turner, A. P. F.; Chen, B. N.; Piletsky, S. A., In vitro diagnostics in diabetes: Meeting the challenge. Clinical Chemistry 1999, 45, (9), 1596-1601.
41. Sun, C. L.; Lee, H. H.; Yang, J. M.; Wu, C. C., The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosensors & Bioelectronics 2011, 26, (8), 3450-3455.
42. Betarbet, R.; Sherer, T. B.; Greenamyre, J. T., Animal models of Parkinson's disease. Bioessays 2002, 24, (4), 308-318.
43. Kang, G. A.; Bronstein, J. M.; Masterman, D. L.; Redelings, M.; Crum, J. A.; Ritz, B., Clinical characteristics in early Parkinson's disease in a central California population-based study. Mov Disord 2005, 20, (9), 1133-42.
44. Zgaljardic, D. J.; Borod, J. C.; Foldi, N. S.; Mattis, P., A review of the cognitive and behavioral sequelae of Parkinson's disease: relationship to frontostriatal circuitry. Cogn Behav Neurol 2003, 16, (4), 193-210.
45. Valente, E. M.; Abou-Sleiman, P. M.; Caputo, V.; Muqit, M. M. K.; Harvey, K.; Gispert, S.; Ali, Z.; Del Turco, D.; Bentivoglio, A. R.; Healy, D. G.; Albanese, A.; Nussbaum, R.; Gonzalez-Maldonaldo, R.; Deller, T.; Salvi, S.; Cortelli, P.; Gilks, W. P.; Latchman, D. S.; Harvey, R. J.; Dallapiccola, B.; Auburger, G.; Wood, N. W., Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 2004, 304, (5674), 1158-1160.
46. Dauer, W.; Przedborski, S., Parkinson's disease: Mechanisms and models. Neuron 2003, 39, (6), 889-909.
47. Cooper, J. A.; Sagar, H. J.; Jordan, N.; Harvey, N. S.; Sullivan, E. V., Cognitive Impairment in Early, Untreated Parkinsons-Disease and Its Relationship to Motor Disability. Brain 1991, 114, 2095-2122.
48. Lakshmi, D.; Bossi, A.; Whitcombe, M. J.; Chianella, I.; Fowler, S. A.; Subrahmanyam, S.; Piletska, E. V.; Piletsky, S. A., Electrochemical Sensor for Catechol and Dopamine Based on a Catalytic Molecularly Imprinted Polymer-Conducting Polymer Hybrid Recognition Element. Analytical Chemistry 2009, 81, (9), 3576-3584.
49. Kumar, S. A.; Tang, C. F.; Chen, S. M., Poly(4-amino-1-1 '-azobenzene-3, 4 '-disulfonic acid) coated electrode for selective detection of dopamine from its interferences. Talanta 2008, 74, (4), 860-866.
50. Alarcon-Angeles, G.; Perez-Lopez, B.; Palomar-Pardave, M.; Ramirez-Silva, M. T.; Alegret, S.; Merkoci, A., Enhanced host-guest electrochemical recognition of dopamine using cyclodextrin in the presence of carbon nanotubes. Carbon 2008, 46, (6), 898-906.
51. Wang, G. L.; Xu, J. J.; Chen, H. Y., Dopamine sensitized nanoporous TiO2 film on electrodes: Photoelectrochemical sensing of NADH under visible irradiation. Biosensors & Bioelectronics 2009, 24, (8), 2494-2498.
52. Silva, L. I. B.; Ferreira, F. D. P.; Freitas, A. C.; Rocha-Santos, T. A. P.; Duarte, A. C., Optical fiber biosensor coupled to chromatographic separation for screening of dopamine, norepinephrine and epinephrine in human urine and plasma. Talanta 2009, 80, (2), 853-857.
53. Ali, S. R.; Ma, Y. F.; Parajuli, R. R.; Balogun, Y.; Lai, W. Y. C.; He, H. X., A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Analytical Chemistry 2007, 79, (6), 2583-2587.
54. Zheng, J. B.; Zhou, X. L., Sodium dodecyl sulfate-modified carbon paste electrodes for selective determination of dopamine in the presence of ascorbic acid. Bioelectrochemistry 2007, 70, (2), 408-415.
55. Mazumder, V.; Sun, S. H., Oleylamine-Mediated Synthesis of Pd Nanoparticles for Catalytic Formic Acid Oxidation. Journal of the American Chemical Society 2009, 131, (13), 4588-+.
56. Lee, Y. M.; Garcia, M. A.; Huls, N. A. F.; Sun, S. H., Synthetic Tuning of the Catalytic Properties of Au-Fe3O4 Nanoparticles. Angewandte Chemie-International Edition 2010, 49, (7), 1271-1274.
57. Ying, J. Y.; Zhang, J.; Ting, B. P.; Khan, M.; Pearce, M. C.; Yang, Y. Y.; Gao, Z. Q., Pt nanoparticle label-mediated deposition of Pt catalyst for ultrasensitive electrochemical immunosensors. Biosensors & Bioelectronics 2010, 26, (2), 418-423.
58. Teng, X. W.; Black, D.; Watkins, N. J.; Gao, Y. L.; Yang, H., Platinum-maghemite core-shell nanoparticles using a sequential synthesis. Nano Letters 2003, 3, (2), 261-264.
59. Herricks, T.; Chen, J. Y.; Xia, Y. N., Polyol synthesis of platinum nanoparticles: Control of morphology with sodium nitrate. Nano Letters 2004, 4, (12), 2367-2371.
60. Zhou, D. M.; Ju, H. X.; Chen, H. Y., Catalytic oxidation of dopamine at a microdisk platinum electrode modified by electrodeposition of nickel hexacyanoferrate and Nafion(R). Journal of Electroanalytical Chemistry 1996, 408, (1-2), 219-223.
61. Joshi, P.; Joshi, H. C.; Sanghi, S. K.; Kundu, S., Immobilization of monoamine oxidase on eggshell membrane and its application in designing an amperometric biosensor for dopamine. Microchimica Acta 2010, 169, (3-4), 383-388.