研究生: |
張晉嘉 Chang, Chin-Chia |
---|---|
論文名稱: |
實三維空間中的變形量子化 On the Deformation Quantization on R^3 |
指導教授: |
吳思曄
Wu, Siye |
口試委員: |
何南國
Ho, Nan-Kuo 鄭日新 Cheng, Jih-Hsin |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 27 |
中文關鍵詞: | 變形量子化 、Gutt 乘積 、*乘積 |
外文關鍵詞: | deformation quantization, Gutt product, star product |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文我們會透過實四維空間中的 Moyal 乘積經由 U(1)作用下來定義 一個實三維空間中的 ∗ 乘積。這個我們定的 ∗ 乘積與既有在 su(2)的對偶李代數 上的 Gutt 乘積同為實三維空間中的 ∗ 乘積在算數上有不同結果。我們將證明他 們是等價的並且構造出等價算子。
In this thesis, we define a star product on R^3 which is associated to the Moyal product on R^4. We also recall the Gutt product defined on the dual of a Lie algebra. Under the isomorphism between the dual of su(2) and R^3, we construct an equivalence operator between these two star products.
[1] D. Arnal, Le produit star de Kontsevich sur le dual d’une alg`ebra de Lie nilpotente, C. R. Acad. Sci. Paris, S ́er. I, Math. 327, 823–826 (1998).
[2] D. Arnal, N. Ben Amar and M. Masmoudi, Cohomology of good graphs and Kontsevich linear star products, Lett. Math. Phys. 48, 291–306 (1999).
[3] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer,
Deformation theory and quantization, I, Deformations of symplectic structures, Ann. Phys. (N.Y.) 111, 61–110 (1978).
[4] A. Connes, M. Flato and D. Sternheimer, Closed star products and cyclic cohomology, Lett. Math. Phys. 24, 1–12 (1992).
[5] M. De Wilde and P.B.A. Lecomte, Existence of star-products on exact symplectic manifolds, Lett. Math. Phys. 7, 487–496 (1983).
[6] G. Dito, Kontsevich star-product on a dual of a Lie algebra, Lett. Math. Phys. 48, 307–322 (1999).
[7] G. Dito and D. Sternheimer, Deformation quantization: genesis, de- velopments and metamorphisms, in: IRMA Lectures in Math. Theoret. Phys. 1, 9–54, Walter de Gruyter, Berlin (2002).
[8] B.V. Fedosov, Formal quantization, in: Some Topics of Modern Math. and Their Appl. to Problems of Math. Phys., 82–86, Moscow (1985).
[9] M. Gadella, Moyal formulation of quantum mechanics, Fortschr. Phys. 43, 3, 229–264 (1995).
[10] J. M. Gracia-Bond ́ıa, F. Lizzi, G. Marmo and P. Vitale, Infinitely many star products to play with, JHEP, 0204, 026 (2004).
[11] H. J. Groenewold, On the principles of elementary quantum mechanics, Physica, 12, 405–460 (1946).
[12] S. Gutt, An explicit -product on the cotangent bundle of a Lie group, Lett. Math. Phys. 7 249–258 (1983).
[13] M. Kontsevich, Deformation quantization of Poisson manifolds I, Lett. Math. Phys. 66, 157–216 (2003).
[14] L. Rosa and P. Vitale, On the ∗-quantization and the Duflo map in three dimensions, Mod. Phys. Lett. A 27, No.35 (2012).
[15] P. Stapor, Convergence of the Gutt star producta: a strict deformation quantization, Preprint arXiv:1604.05873v1 [math.QA] (2016).
[16] I. Vaisman, Lectures on the geometry of Poisson manifolds, Progress in Mathematics, 118, Birkh ̈auser, Boston (1994).