簡易檢索 / 詳目顯示

研究生: 張晉嘉
Chang, Chin-Chia
論文名稱: 實三維空間中的變形量子化
On the Deformation Quantization on R^3
指導教授: 吳思曄
Wu, Siye
口試委員: 何南國
Ho, Nan-Kuo
鄭日新
Cheng, Jih-Hsin
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 27
中文關鍵詞: 變形量子化Gutt 乘積*乘積
外文關鍵詞: deformation quantization, Gutt product, star product
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文我們會透過實四維空間中的 Moyal 乘積經由 U(1)作用下來定義 一個實三維空間中的 ∗ 乘積。這個我們定的 ∗ 乘積與既有在 su(2)的對偶李代數 上的 Gutt 乘積同為實三維空間中的 ∗ 乘積在算數上有不同結果。我們將證明他 們是等價的並且構造出等價算子。


    In this thesis, we define a star product on R^3 which is associated to the Moyal product on R^4. We also recall the Gutt product defined on the dual of a Lie algebra. Under the isomorphism between the dual of su(2) and R^3, we construct an equivalence operator between these two star products.

    1 Introduction . . . . . . . . . . . .1 2 Star product on R^3 . . . . . . . . . . . .3 3 Gutt prodcut. . . . . . . . . . . . 7 4 Equivalence . . . . . . . . . . . .10 4.1 Equivalence in the homological language . . . . . . . . . . . . 10 4.2 Weyl product ........................... 12 4.3 Construction of the equivalence operator . . . . . . . . . . . . 17 A Smoothness of the star product . . . . . . . . . . . .25

    [1] D. Arnal, Le produit star de Kontsevich sur le dual d’une alg`ebra de Lie nilpotente, C. R. Acad. Sci. Paris, S ́er. I, Math. 327, 823–826 (1998).
    [2] D. Arnal, N. Ben Amar and M. Masmoudi, Cohomology of good graphs and Kontsevich linear star products, Lett. Math. Phys. 48, 291–306 (1999).
    [3] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer,
    Deformation theory and quantization, I, Deformations of symplectic structures, Ann. Phys. (N.Y.) 111, 61–110 (1978).
    [4] A. Connes, M. Flato and D. Sternheimer, Closed star products and cyclic cohomology, Lett. Math. Phys. 24, 1–12 (1992).
    [5] M. De Wilde and P.B.A. Lecomte, Existence of star-products on exact symplectic manifolds, Lett. Math. Phys. 7, 487–496 (1983).
    [6] G. Dito, Kontsevich star-product on a dual of a Lie algebra, Lett. Math. Phys. 48, 307–322 (1999).
    [7] G. Dito and D. Sternheimer, Deformation quantization: genesis, de- velopments and metamorphisms, in: IRMA Lectures in Math. Theoret. Phys. 1, 9–54, Walter de Gruyter, Berlin (2002).
    [8] B.V. Fedosov, Formal quantization, in: Some Topics of Modern Math. and Their Appl. to Problems of Math. Phys., 82–86, Moscow (1985).
    [9] M. Gadella, Moyal formulation of quantum mechanics, Fortschr. Phys. 43, 3, 229–264 (1995).
    [10] J. M. Gracia-Bond ́ıa, F. Lizzi, G. Marmo and P. Vitale, Infinitely many star products to play with, JHEP, 0204, 026 (2004).
    [11] H. J. Groenewold, On the principles of elementary quantum mechanics, Physica, 12, 405–460 (1946).
    [12] S. Gutt, An explicit -product on the cotangent bundle of a Lie group, Lett. Math. Phys. 7 249–258 (1983).
    [13] M. Kontsevich, Deformation quantization of Poisson manifolds I, Lett. Math. Phys. 66, 157–216 (2003).
    [14] L. Rosa and P. Vitale, On the ∗-quantization and the Duflo map in three dimensions, Mod. Phys. Lett. A 27, No.35 (2012).
    [15] P. Stapor, Convergence of the Gutt star producta: a strict deformation quantization, Preprint arXiv:1604.05873v1 [math.QA] (2016).
    [16] I. Vaisman, Lectures on the geometry of Poisson manifolds, Progress in Mathematics, 118, Birkh ̈auser, Boston (1994).

    QR CODE