研究生: |
吳詠捷 Wu, Yong-Jie |
---|---|
論文名稱: |
外爾半金屬二碲化鎢之物理性質分析 Characterizations of the WTe2 Weyl Semi-metals |
指導教授: |
李奕賢
Lee, Yi-Hsien |
口試委員: |
張嘉升
Chang, Chia-Seng 李尚凡 Lee, Shang-Fan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 二維材料 、二碲化鎢 、磁阻 |
外文關鍵詞: | 2D material, WTe2, magnetoresistance |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討二碲化鎢(WTe2)的磁阻以及相關物理特性。二碲化鎢的磁阻隨磁場增加而無飽和磁阻,具有許多研究潛力而受到高度重視,相關文獻提到二碲化鎢屬於第二類外爾半金屬,存在無質量且具有手性的外爾費米子,手性決定此粒子自旋方向與移動方向,具有此特性的粒子,無法以半古典的電子運動方程式來描述,因此出現負磁阻、量子震盪、拓樸絕緣體等特性。
本研究利用化學氣相沉積法合成WTe2單晶,以偏振拉曼光學分析技術,判斷其異向特性,再以電性四點量測系統,鑑定各種製程對於材料的影響,透過物理特性量測系統測量磁阻,判斷材料的局域化效應與溫度效應,並透過載子摻雜來改變材料物理特性,以獲得高磁阻元件及高溫巨磁阻之應用。
n this research, we study the extremely large magnetoresistance and related physical properties of the CVD-grown tungsten tellurides (WTe2). Recently, tungsten telluride is categorized into type II Weyl semimetals and its magnetoresistance is not saturated with the increase of magnetic field, which attract considerable attentions. In the Weyl semimetals, conduction carrier is a mass-free fermion with chirality and the chirality would determine the spin direction and the movement direction of the particle. Particle with these properties cannot be described by semi-classical equation of electron motion, which is correlated to some characteristics including negative magnetoresistance, quantum oscillation and topological insulator. Here we realize the CVD synthesis of the WTe2 and determine the crystalline orientation with polarization-resolved Raman spectroscopy. The WTe2 devices are fabricated with two representative process and further study their electrical properties with four-point measurements. Influence of temperature, carrier configurations on magnetoresistance and related properties of the WTe2 are studied and discussed.
1. Gong, C., et al., Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Applied Physics Letters, 2013. 103(5): p. 053513.
2. Gong, C., et al., Erratum: “Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors” [Appl. Phys. Lett. 103, 053513 (2013)]. Applied Physics Letters, 2015. 107(13): p. 139904.
3. Soluyanov, A.A., et al., Type-II Weyl semimetals. Nature, 2015. 527(7579): p. 495-498.
4. Radisavljevic, B., et al., Single-layer MoS2 transistors. Nature Nanotechnology, 2011. 6: p. 147.
5. Empante, T.A., et al., Chemical Vapor Deposition Growth of Few-Layer MoTe2 in the 2H, 1T′, and 1T Phases: Tunable Properties of MoTe2 Films. ACS Nano, 2017. 11(1): p. 900-905.
6. Acerce, M., D. Voiry, and M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nano, 2015. 10(4): p. 313-318.
7. Kappera, R., et al., Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat Mater, 2014. 13(12): p. 1128-1134.
8. Zeng, H., et al., Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotechnology, 2012. 7: p. 490.
9. Li, Y., et al., Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating. 2016. 7: p. 10671.
10. Mar, A., S. Jobic, and J.A. Ibers, Metal-metal vs tellurium-tellurium bonding in WTe2 and its ternary variants TaIrTe4 and NbIrTe4. Journal of the American Chemical Society, 1992. 114(23): p. 8963-8971.
11. Ali, M.N., et al., Large, non-saturating magnetoresistance in WTe2. Nature, 2014. 514(7521): p. 205-208.
12. Brown, B., The crystal structures of WTe2 and high-temperature MoTe2. Acta Crystallographica, 1966. 20(2): p. 268-274.
13. Lee, C.-H., et al., Tungsten Ditelluride: a layered semimetal. 2015. 5: p. 10013.
14. Kong, W.-D., et al., Raman scattering investigation of large positive magnetoresistance material WTe2. Applied Physics Letters, 2015. 106(8): p. 081906.
15. Wang, Y., et al., Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2. 2016. 7: p. 13142.
16. Song, Q., et al., The In-Plane Anisotropy of WTe2 Investigated by Angle-Dependent and Polarized Raman Spectroscopy. 2016. 6: p. 29254.
17. Zhou, Y., et al., Pressure-induced Td to 1T′ structural phase transition in WTe2. AIP Advances, 2016. 6(7): p. 075008.
18. Lee, J., et al., Single- and few-layer WTe2 and their suspended nanostructures: Raman signatures and nanomechanical resonances. Nanoscale, 2016. 8(15): p. 7854-7860.
19. Jiang, Y.C., J. Gao, and L. Wang, Raman fingerprint for semi-metal WTe2 evolving from bulk to monolayer. 2016. 6: p. 19624.
20. Song, Q., et al., The polarization-dependent anisotropic Raman response of few-layer and bulk WTe2 under different excitation wavelengths. RSC Advances, 2016. 6(105): p. 103830-103837.
21. Lu, N., et al., Atomic and Electronic Structures of WTe2 Probed by High Resolution Electron Microscopy and ab Initio Calculations. The Journal of Physical Chemistry C, 2016. 120(15): p. 8364-8369.
22. Kuc, A., N. Zibouche, and T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide $T$S${}_{2}$. Physical Review B, 2011. 83(24): p. 245213.
23. Li, T. and G. Galli, Electronic Properties of MoS2 Nanoparticles. The Journal of Physical Chemistry C, 2007. 111(44): p. 16192-16196.
24. Kobayashi, K. and J. Yamauchi, Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces. Physical Review B, 1995. 51(23): p. 17085-17095.
25. Ding, Y., et al., First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Physica B: Condensed Matter, 2011. 406(11): p. 2254-2260.
26. Lebègue, S. and O. Eriksson, Electronic structure of two-dimensional crystals from ab initio theory. Physical Review B, 2009. 79(11): p. 115409.
27. Ataca, C., H. Şahin, and S. Ciraci, Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure. The Journal of Physical Chemistry C, 2012. 116(16): p. 8983-8999.
28. Wilson, J.A. and A.D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Advances in Physics, 1969. 18(73): p. 193-335.
29. Splendiani, A., et al., Emerging Photoluminescence in Monolayer MoS2. Nano Letters, 2010. 10(4): p. 1271-1275.
30. Augustin, J., et al., Electronic band structure of the layered compound $\mathrm{Td}\ensuremath{-}{\mathrm{WTe}}_{2}$. Physical Review B, 2000. 62(16): p. 10812-10823.
31. Zhang, E., et al., Tunable Positive to Negative Magnetoresistance in Atomically Thin WTe2. Nano Letters, 2017. 17(2): p. 878-885.
32. Amani, M., et al., High Luminescence Efficiency in MoS2 Grown by Chemical Vapor Deposition. ACS Nano, 2016. 10(7): p. 6535-6541.
33. Kim, H.-J., et al., Origins of the structural phase transitions in ${\mathrm{MoTe}}_{2}$ and ${\mathrm{WTe}}_{2}$. Physical Review B, 2017. 95(18): p. 180101.
34. Kang, D., et al., Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride. 2015. 6: p. 7804.
35. Novoselov, K.S., et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005. 438: p. 197.
36. Lee, C., et al., Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano, 2010. 4(5): p. 2695-2700.
37. Song, Q., et al., The In-Plane Anisotropy of WTe2 Investigated by Angle-Dependent and Polarized Raman Spectroscopy. Scientific Reports, 2016. 6: p. 29254.
38. Zeng, Z., et al., Single-Layer Semiconducting Nanosheets: High-Yield Preparation and Device Fabrication. Angewandte Chemie International Edition, 2011. 50(47): p. 11093-11097.
39. Voiry, D., et al., Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. 2013. 12: p. 850.
40. Jiang, L., et al., Optimizing Hybridization of 1T and 2H Phases in MoS2 Monolayers to Improve Capacitances of Supercapacitors. Materials Research Letters, 2015. 3(4): p. 177-183.
41. Kappera, R., et al., Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. 2014. 13: p. 1128.
42. Clark, G., et al., Vapor-transport growth of high optical quality WSe2 monolayers. APL Materials, 2014. 2(10): p. 101101.
43. Wu, S., et al., Vapor–Solid Growth of High Optical Quality MoS2 Monolayers with Near-Unity Valley Polarization. ACS Nano, 2013. 7(3): p. 2768-2772.
44. Zhou, H., et al., Large Area Growth and Electrical Properties of p-Type WSe2 Atomic Layers. Nano Letters, 2015. 15(1): p. 709-713.
45. Schmidt, P., et al., Chemical Vapor Transport Reactions–Methods, Materials, Modeling, in Advanced Topics on Crystal Growth, S.O. Ferreira, Editor. 2013, InTech: Rijeka. p. Ch. 09.
46. Lv, Y.-Y., et al., Composition and temperature-dependent phase transition in miscible Mo1−xWxTe2 single crystals. 2017. 7: p. 44587.
47. Lee, Y.-H., et al., Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Advanced Materials, 2012. 24(17): p. 2320-2325.
48. Kobayashi, Y., et al., Growth and Optical Properties of High-Quality Monolayer WS2 on Graphite. ACS Nano, 2015. 9(4): p. 4056-4063.
49. Rong, Y., et al., Controlling sulphur precursor addition for large single crystal domains of WS2. Nanoscale, 2014. 6(20): p. 12096-12103.
50. Gao, Y., et al., Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. 2015. 6: p. 8569.
51. Liu, K.-K., et al., Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates. Nano Letters, 2012. 12(3): p. 1538-1544.
52. Ling, X., et al., Role of the Seeding Promoter in MoS2 Growth by Chemical Vapor Deposition. Nano Letters, 2014. 14(2): p. 464-472.
53. Bosi, M., Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review. RSC Advances, 2015. 5(92): p. 75500-75518.
54. Chen, L., et al., Screw-Dislocation-Driven Growth of Two-Dimensional Few-Layer and Pyramid-like WSe2 by Sulfur-Assisted Chemical Vapor Deposition. ACS Nano, 2014. 8(11): p. 11543-11551.
55. Huang, J.-K., et al., Large-Area Synthesis of Highly Crystalline WSe2 Monolayers and Device Applications. ACS Nano, 2014. 8(1): p. 923-930.
56. Liu, B., et al., Chemical Vapor Deposition Growth of Monolayer WSe2 with Tunable Device Characteristics and Growth Mechanism Study. ACS Nano, 2015. 9(6): p. 6119-6127.
57. Zhao, Y., et al., Anisotropic magnetotransport and exotic longitudinal linear magnetoresistance in $\mathrm{WT}{\mathrm{e}}_{2}$ crystals. Physical Review B, 2015. 92(4): p. 041104.
58. Weyl, H., Quantenmechanik und Gruppentheorie. Zeitschrift für Physik, 1927. 46(1): p. 1-46.
59. Xu, S.-Y., et al., Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science, 2015. 349(6248): p. 613.
60. Weng, H., et al., Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides. Physical Review X, 2015. 5(1): p. 011029.
61. Soluyanov, A.A., et al., Type-II Weyl semimetals. Nature, 2015. 527: p. 495.
62. Anderson, P.W., Localized Magnetic States in Metals. Physical Review, 1961. 124(1): p. 41-53.
63. Wang, L., et al., Tuning magnetotransport in a compensated semimetal at the atomic scale. Nature Communications, 2015. 6: p. 8892.
64. Baibich, M.N., et al., Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Physical Review Letters, 1988. 61(21): p. 2472-2475.
65. Kohn, W., Excitonic Phases. Physical Review Letters, 1967. 19(8): p. 439-442.
66. Pillo, T., et al., Photoemission of bands above the Fermi level: The excitonic insulator phase transition in $1T\ensuremath{-}{\mathrm{TiSe}}_{2}$. Physical Review B, 2000. 61(23): p. 16213-16222.
67. Lv, Y.-Y., et al., The relationship between anisotropic magnetoresistance and topology of Fermi surface in Td-MoTe2 crystal. Journal of Applied Physics, 2017. 122(4): p. 045102.
68. Wang, J.-R., G.-Z. Liu, and C.-J. Zhang, Excitonic pairing and insulating transition in two-dimensional semi-Dirac semimetals. Physical Review B, 2017. 95(7): p. 075129.
69. Wu, Y., et al., Temperature-Induced Lifshitz Transition in ${\mathrm{WTe}}_{2}$. Physical Review Letters, 2015. 115(16): p. 166602.
70. Luo, Y., et al., Hall effect in the extremely large magnetoresistance semimetal WTe2. Applied Physics Letters, 2015. 107(18): p. 182411.
71. Cage, M.E., R.F. Dziuba, and B.F. Field, A Test of the Quantum Hall Effect as a Resistance Standard. IEEE Transactions on Instrumentation and Measurement, 1985. IM-34(2): p. 301-303.
72. Sadowski, M.L., et al., Landau Level Spectroscopy of Ultrathin Graphite Layers. Physical Review Letters, 2006. 97(26): p. 266405.
73. Li, P., et al., Evidence for topological type-II Weyl semimetal WTe2. Nature Communications, 2017. 8(1): p. 2150.
74. Potter, A.C., I. Kimchi, and A. Vishwanath, Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals. Nature Communications, 2014. 5: p. 5161.
75. Morozov, S.V., et al., Strong Suppression of Weak Localization in Graphene. Physical Review Letters, 2006. 97(1): p. 016801.
76. Wu, X., et al., Weak Antilocalization in Epitaxial Graphene: Evidence for Chiral Electrons. Physical Review Letters, 2007. 98(13): p. 136801.
77. Tikhonenko, F.V., et al., Transition between Electron Localization and Antilocalization in Graphene. Physical Review Letters, 2009. 103(22): p. 226801.
78. Zhang, X., et al., Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chemical Society Reviews, 2015. 44(9): p. 2757-2785.
79. Fu, D., et al., Tuning the electrical transport of type II Weyl semimetal WTe2 nanodevices by Ga+ ion implantation. Scientific Reports, 2017. 7(1): p. 12688.
80. Dongzhi, F., et al., Tuning the electrical transport of type II Weyl semimetal WTe 2 nanodevices by Mo doping. Nanotechnology, 2018. 29(13): p. 135705.
81. Carl, H.N., et al., Large-area synthesis of high-quality monolayer 1T’-WTe 2 flakes. 2D Materials, 2017. 4(2): p. 021008.
82. Kim, Y., et al., Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe2. Nanoscale, 2016. 8(4): p. 2309-2316.
83. Yi, Y., et al., Thickness dependent magneto transport properties of WTe2 thin films. Solid State Communications, 2017. 260: p. 45-49.