研究生: |
葉易橓 Yeh, Yi-Shun |
---|---|
論文名稱: |
直接甲醇燃料電池陽極端微噴霧式進料系統製作 Direct methanol fuel cell anode mist jetting type fuel supplement system fabrication |
指導教授: |
曾繁根
Tseng, Fang-Gang |
口試委員: |
凌守弘
蘇育全 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 直接甲醇燃料電池 、壓電式 、噴霧 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
燃料電池由陽極、陰極與電解質所構成,可將電化學能直接轉化成電能。相較於傳統電力有高電能轉換效率,長時間操作與產生廢熱再利用電力共生等優勢。在眾多類型中又以具有低溫操作能力及高能量密度的直接甲醇燃料電池最有微型化的潛力與商機,供可攜式用品市場使用。
現行直接甲醇燃料電池進料模式大部分為小型蠕動馬達推動液體,流經高純度石墨製流道板後進入陽極發生反應,因此產生許多問題;在材料端的問題有:1.高純度石墨板製作加工不易2.系統增重,石墨塊厚度達3cm以維持切割時材料強度,使單一電池重達2公斤不便攜帶。在系統端的問題有: 1.傳統蛇行流道板(水平進料方式)產生燃料被氣泡或是雜質阻塞,使電性表現下降。2.因流道蜿蜒有一定長度使前後段會產生濃度及溫度梯度,因此燃料在流道各處反應環境不同,導致反應不均勻。
本研究希望發展出新型直接甲醇燃料電池陽極端進料模式,以整合壓電材料產生超音波震盪來達成垂直進料解決以上問題。1.超音波震盪垂直進料可避免因水平進料而產生的阻塞情形。2.垂直進料不需通過蜿蜒流道讓燃料接觸觸媒反應。不因流道長而有溫度、濃度梯度問題。3.噴霧進料可達到DOD(droplet on demand)效果有效的進料及廢物移除。可望有較高的單位時間反應及放電效率。
先以巨觀噴霧測試電池組放電可能性,接著檢測燃料受超音波震盪後是否產生影響。然後製作各微小化部件:1.噴霧震盪片作動參數能耗分析。2.微噴孔片設計並製作改良。3.噴孔片表面處理與液珠噴射現象分析。4.各式攝影(巨觀DV、顯微鏡、高速攝影機)分析液珠噴射狀況,最後以電路控制方式導入週期性進料概念,經各部件微小化並整合成全系統後,可提供直接甲醇燃料電池高效率及高便利性的進料方式。
Abstract
Fuel cell is a power generating device composed by anode, cathode and electrolyte. It can directly change electro-chemical energy into electricity. Compared to traditional power generating devices, it has many advantages such as high transformation efficiency, longer time duration and waste heat recycle ability. Since direct methanol fuel cell has low temperature operation ability and high energy density. Among all kinds of fuel cells it has most potential to be miniaturization for portable device usage.
Nowadays the major fuel refilling mode for direct methanol fuel cell(DMFC) is using syringe pump to push liquid through high purity carbon flow channel plate into anode for electro-chemical reaction. This method produces many problems. For material’s aspect: 1. Manufacture difficulty for high purity carbon flow channel plate. 2. The carbon plate must be in 3cm width to maintain material strength in cutting, which causes single cell weighing 2 kg and limits its portable application. For system’s aspect: 1.Fuel will be blocked by bubbles or impurities in traditional flow channel. This phenomenon causes electrical performance degradation. 2. Serpentine flow channel resulting concentration and temperature level between the start and end of it. This condition causes different reaction surroundings and inconsistent reaction in the channel.
We hope to develop new type direct methanol fuel cell anode fuel supplement system in this research. Solving all the mentioned problems by integrating piezo-electrical material produces ultrasonic vibration to accomplish vertical fuel supplement. 1. Vertical fuel supplement can avoid fuel congestion caused by parallel supplement. 2. Without flow channel avoiding temperature and concentration gradient. 3. Mist jetting supplement have droplet on demand effect can refill fuel and move junks efficiently. Thus, we can have quicker reaction time and higher electrical transforming efficiency. 4. No more complicated system and massive equipment for a single fuel cell.
First, we integrate macro mist jetting supplement method with fuel cell system and test functional probability, than checking whether ultrasonic vibration will cause fuel transformation or not. The experiment procedure in micro device fabrication as follows. 1. Piezo-electrical actuating condition analysis.2.Micro nozzle plate design and innovate. 3. Nozzle plate surface treatment and droplet jetting condition analysis. 4. Droplet jetting condition analysis by Digital Camera, Microscope and high-speed recorder, then via integrated with electro-controlling system realize periodic fuel supply concept. After all part fabrication and integration into whole system. Higher efficiency and much convenient fuel supplement model in direct methanol fuel cell could be established.
第七章 參考文獻
[1] Xiaoming Ren , Piotr Zelenay, Sharon Thomas, John Davey, Shimshon Gottesfeld, “Recent advances in direct methanol fuel cells at Los Alamos National Laboratory”
Journal of Power Sources,Vol.86, P.111–116, 2000.
[2] B.D. McNicol, D.A.J. Rand, K.R. Williams, “Fuel cells for road transportation purposes — yes or no?” Journal of Power Sources,Vol.100, P.47–59, 2001.
[3] G. Cacciola, V. Antonucci, S. Freni, “Technology up date and new strategies on fuel cells.” Journal of Power Sources,Vol.100, P.67–79, 2001.
[4] T.S. Zhao, W.W. Yang, R. Chen, Q.X. Wu”Towards operating direct methanol fuel cells with highly concentrated fuel” Journal of Power Sources Vol.195 P.3451–3462 (2010)
[5] A.A. Kulikovsky, “Model of the flow with bubbles in the anode channel and
performance of a direct methanol fuel cell.” Electrochemistry Communications,Vol.7, P.237-243, 2005.
[6] C. W. Wong, T. S. Zhao, Z.Q. Ye, and J. G. Liu, “Transient Capillary Blocking in the Flow Field of a Micro-DMFC and Its Effect on Cell Performance.” Journal of The Electrochemical Society,Vol. 152 _8, A1600-A1605, 2005.
[7] H. Yang, T.S. Zhao, Q. Ye, “Pressure drop behavior in the anode flow field of
liquid feed direct methanol fuel cells.” Journal of Power Sources, Vol. 142 , P.117-124, 2005.
[8] H. Yang, T.S. Zhao, Q. Ye “In situ visualization study of CO2 gas bubble behavior
in DMFC anode flow fields” Journal of Power Sources Vol.139 P.79–90 (2005)
[9] Marc T. M. Koper, Tatyana E. Shubina, and Rutger A. van Santen “Periodic Density Functional Study of CO and OH Adsorption on Pt-Ru Alloy Surfaces: Implications for CO Tolerant Fuel Cell Catalysts” J. Phys. Chem. B, Vol. 106 , P. 686-692, 2002.
[10] Christina Roth, Nathalie Benker, Thorsten Buhrmester, Marian Mazurek, Matthias
Loster, Hartmut Fuess, Diederik C. Koningsberger, and David E. Ramaker “Determination of O[H] and CO Coverage and Adsorption Sites on PtRu Electrodes in an Operating PEM Fuel Cell” J.A.C.S. , 10/04/2005
[11] A.K. Shukla, P.A. Christenson, A.Hamnett, M.P. Hogarth “A vapour-feed direct-methanol fuel cell with proton-exchange membrane electrolyte” Journal of Power Sources, Vol. 55 , P.87-91, 1995.
[12] Martin Hogarth, Paul Christenson, Andrew Hamnett, Ashok Shukla “The design and construction of high-performance direct methanol fuel cells. 2. Vapour-feed systems. ” Journal of Power Sources, Vol. 69 , P.125-136, 1997.
[13] R. Chen, T.S. Zhao, J.G. Liu “Effect of cell orientation on the performance of passive
direct methanol fuel cells.” Journal of Power Sources, Vol. 157, P.351-357, 2006.
[14]Ikwhang Chang, Seungbum Ha, Sunghan Kim, Sangkyun Kang, Jinho Kim,
Kyounghwan Choi, SukWon Cha ”Operational condition analysis for vapor-fed direct
methanol fuel cells” Journal of Power Sources Vol.188 P.205–212 ,2009
[15] Josef Kallo, Jim Kamara, Werner Lehnert , Rittmar von Helmolt “Cell voltage transients of a gas-fed direct methanol fuel cell.” Journal of Power Sources, Vol. 127, P.181-186, 2004.
[16] Gregory Jewett, Zhen Guo, Amir Faghri “Performance characteristics of a vapor feed passive miniature direct methanol fuel cell.” International Journal of Heat and Mass Transfer, Vol. 52, P.4573-4583, 2009.
[17] Zhen Guo, Amir Faghri “Vapor feed direct methanol fuel cells with passive
thermal-fluids management system.” Journal of Power Sources, Vol. 167, P.378-390, 2007.
[18] Q X Wu, T S Zhao, W W Yang and R Chen “ A flow field enabling operating direct methanol fuel cells with highly concentrated methanol” international journal of
hydrogen energy Vol.36 P.830~838 ,2011
[19] Xianshe Feng , Robert Y. M. Huang “Liquid Separation by Membrane Pervaporation: A Review.” Ind. Eng. Chem. Res, Vol.36, P. 1048-1066. 1997
[20] HaeKyoung Kim “Passive direct methanol fuel cells fed with methanol vapor.” Journal of Power Sources, Vol.162, P. 1232-1235. 2006
[21] Jeremy Rice, Amir Faghri “Analysis of a passive vapor feed direct methanol fuel cell.” International Journal of Heat and Mass Transfer, Vol.51, P. 948-959. 2008
[22] Chao Xu, Amir Faghri, and Xianglin Li “Development of a High Performance Passive Vapor-Feed DMFC Fed with Neat Methanol.” Journal of The Electrochemical Society, Vol.157, P. B1109-B1117. 2010
[23] Chao Xu, Amir Faghri “Mass transport analysis of a passive vapor-feed direct methanol fuel cell.” Journal of Power Sources, Vol.195, P. 7011-7024. 2010
[24] Bin Xiao, Amir Faghri “Numerical analysis for a vapor feed miniature direct methanol fuel cell system.” International Journal of Heat and Mass Transfer, Vol. 52, P. 3525-3533. 2009
[25] Zhen Guo, Amir Faghri “Vapor feed direct methanol fuel cells with passive
thermal-fluids management system.” Journal of Power Sources, Vol. 167, P. 378-390. 2007
[26] Masanori Sato, Kazuo Matsuura, Toshitaka Fujii “Ethanol separation from ethanol-water solution by ultrasonic atomization and its proposed mechanism based on parametric decay instability of capillary wave.” JOURNAL OF CHEMICAL PHYSICS, Vol. 114, NUMBER 5, 2001
[27] D. M. Kirpalani and F. Toll “Revealing the physicochemical mechanism for ultrasonic separation of alcohol–water mixtures.” JOURNAL OF CHEMICAL PHYSICS, Vol. 117, NUMBER 8, 2002
[28] Hitomi Kobara, Makiko Tamiya, Akihiro Wakisaka, Tetsuo Fukazu and Kazuo Matsuura “Relationship Between the Size of Mist Droplets and Ethanol Condensation Efficiency at Ultrasonic Atomization on Ethanol–Water Mixtures.” AIChE, Vol. 56, P.810-814, 2010
[29] H.C. Lee “Droplet Formation in a liquid Jet.” IBM J. Res Develop, PP364-369 1994
[30] E.K. Dabora “Production of Mono-disperse Sprays.” http: rsi, aip/rsi/copyright.jsp ,Vol 38, Number 4, 1967
[31] W.T. Pimbley “Droplet Formation from a Liquid Jet: Alinear One-Dimensional Analysis Considered as a Boundary Value Problem.” IBM J. Res Develop, PP148-156 March 1976
[32] Shield, T. W., Bogy, D. B. and Talke, F. E., “Drop Formation by DOD Ink-Jet Nozzles: A Comparison of Experiment and Numerical Simulation,” IBM J. Res Develop, Vol. 31, No. 1, p. 96-110,1987.
[33] S.A. Elrod, B.Hadimioglu, B.T Khuri-Takub, E.G. Rawson, E. Richley, C.F. Quate, N.N. Mansour, T.S. Lundgren “Nozzleless droplet formation with foused acoustic beams.” J. Appl. Phys. 65(9) 1 May 1989
[34] G.Brenn, T. Helpio and F.Dirst “A new apparatus for the production of Mono-disperse sprays at high flow rates.” Chemical Engineering Science Vol.52 No2 pp237~244 1997
[35] J. M. Meacham, C. Ejimofor, S. Kumar, F. L. Degertekin,and A. G. Fedorov “Micromachined ultrasonic droplet generator based on a liquid horn structure.” REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 75, NUMBER 5 2004
[36] J. M. Meacham, M. J. Varady, F. L. Degertekin, and A. G. Fedorov “Droplet formation and ejection from a micromachined ultrasonic droplet generator: Visualization and scaling.” PHYSICS OF FLUIDS 17 100605 _2005
[37] Thomas P. Forbes, F. Levent Degertekin, and Andrei G. Fedorov “Multiplexed operation of a micromachined ultrasonic droplet ejector array.” REVIEW OF SCIENTIFIC INSTRUMENTS 78, 104101 _2007
[38] M J Varady, L McLeod, J M Meacham, F L Degertekin and A G Fedorov “An integrated MEMS infrastructure for fuel processing: hydrogen generation and separation for portable power generation.” J. Micromech. Microeng. 17 S257–S264 (2007)
[39] Vladimir G. Zarnitsyn , J. Mark Meacham ,Mark J. Varady , Chunhai Hao , F. Levent Degertekin , Andrei G. Fedorov “Electrosonic ejector microarray for drug and gene delivery.” Biomed Microdevices 10:299–308 (2008)
[40] J. Mark Meacham , Amanda O’Rourke, Yong Yang, Andrei G. Fedorov, F. Levent Degertekin, David W. Rosen “Micromachined Ultrasonic Print-Head for Deposition of
High-Viscosity Materials.” Journal of Manufacturing Science and Engineering 030905-1, Vol. 132,JUNE 2010
[41] Go‥khan Perc﹐in Laurent Levin, and Butrus T. Khuri-Yakub “Piezoelectrically actuated droplet ejector.” Rev. Sci. Instrum 68 .12, December 1997
[42] Go‥khan Perc﹐Butrus T. Khuri-Yakub “Piezoelectrically Actuated Flextensional
Micromachined Ultrasound Droplet Ejectors.” IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 49, NO. 6, .JUNE 2002
[43] Go‥khan Perc﹐Butrus T. Khuri-Yakub “Piezoelectrically actuated flextensional micromachined ultrasound transducers.” Ultrasonics Vol.40 P.441–448 (2002)
[44] Yeau-Ren Jeng , Chien-Chan Su , Guo-Hua Feng, Yu-Yin Peng , Ghin-Pin Chien “A PZT-driven atomizer based on a vibrating flexible membrane and a micro-machined trumpet-shaped nozzle array.” Microsyst Technol Vol.15,P.865–873 (2009)
[45] S.C. Chen, C.H. Cheng, Y.C. Lin “Analysis and experiment of a novel actuating design with a shear mode PZT actuator for microfluidic application.” Sensors and Actuators A
Vol. 135 P.1–9 (2007)
[46] Bart Beulen, Jos de Jong, Hans Reinten, Marc van den Berg, Herman Wijshoff , Rini van Dongen “Flows on the nozzle plate of an inkjet printhead.” Exp Fluids Vol42, P.217–224, (2007)
[47] Chen S. Tsai, Rong W. Mao, Shih K. Lin, Ning Wang and Shirley C. Tsai “Miniaturized multiple Fourier-horn ultrasonic droplet generators for biomedical applications.” Lab on a chip Vol.10,P 2733–2740, 2010.
[48] Yong-Jae Kim, Jaeyong Choi, Sang Uk Son, Sukhan Lee, Xuan Hung Nguyen,Vu Dat Nguyen, Doyoung Byun, and Han Seo Ko “Comparative Study on Ejection Phenomena of Droplets from Electro-Hydrodynamic Jet by Hydrophobic and Hydrophilic Coatings of Nozzles.” Japanese Journal of Applied Physics Vol. 49 , 060217 (2010)
[49] Jr-Ming Lai, Chang-Yan Huang, Chih-Hao Chen, Kung Linliu and Jenn-Der Lin “Influence of liquid hydrophobicity and nozzle passage curvature on microfluidic
dynamics in a drop ejection process.” J. Micromech. Microeng Vol. 20, 015033 (2010)
[50] K. SCOTT, W. TAAMA, J. CRUICKSHANK “Performance of a direct methanol fuel cell.” JOURNAL OF APPLIED ELECTROCHEMISTRY Vol. 28, 289-297 (1998)
[51] Satoru Hikita, Kimitaka Yamane, Yasuo Nakajima “Measurement of methanol crossover in direct methanol fuel cell.” JSAE Review Vol.22, 151-156 (2001)
[52] Josef Kallo, Wernes Lehnert, and Rittmar von Helmolt “Conductance and Methanol Crossover Investigation of Nafion Membranes in a Vapor-Fed DMFC.” Journal of The Electrochemical Society Vol. 150 (6) P.A765-A769 (2003)
[53]J.G. Liu, T.S. Zhao , R. Chen, C.W. Wong “The effect of methanol concentration
on the performance of a passive DMFC” Electrochemistry Communications Vol.7 P.288–294 (2005)
[54] Steffen Eccarius , Falko Krause, Kevin Beard, Carsten Agert “Passively operated vapor-fed direct methanol fuel cells for portable applications.” Journal of Power Sources Vol.182 P.565–579 (2008)
[55] Debra R. Rolison, Patrick L. Hagans, Karen E. Swider, and Jeffrey W. Long “Role of Hydrous Ruthenium Oxide in Pt-Ru Direct Methanol Fuel Cell Anode Electrocatalysts:
The Importance of Mixed Electron/Proton Conductivity.” Langmuir Vol.15 ,P. 774-779, 1999
[56] F. Maillard, G.-Q. Lu, A. Wieckowski, and U. Stimming. “Ru-Decorated Pt Surfaces as
Model Fuel Cell Electrocatalysts for CO Electrooxidation” J. Phys. Chem. B Vol.109,
P.16230-16243( 2005)
[57] Q.X. Wu, T.S. Zhao, R. Chen, W.W. Yang “Enhancement of water retention in the
membrane electrode assembly for direct methanol fuel cells operating with neat
methanol” international journal of hydrogen energy Vol.35 P.10547~10555 (2010)
[58]曾俊欽,推拉式壓電噴嘴製作及噴霧特性,國立成功大學航空太空工程學系碩士論文,2007
[59]蘇建展,壓電式微噴霧器製作及性能模擬分析,國立中正大學機械工程所博士文,2007