研究生: |
黃靖雅 Ching-Ya Huang |
---|---|
論文名稱: |
以一步合成法製備含鈀奈米金屬之中孔洞二氧化矽及其鑑定 Preparation and Characterization of Pd-containing Mesoporous SiO2 by One-pot Synthesis |
指導教授: |
趙桂蓉
Kuei-Jung Chao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 89 |
中文關鍵詞: | 中孔洞 、二氧化矽 、鈀 、一步合成 、共合成 |
外文關鍵詞: | mesoporous, MCM-41, Pd, palladium, one-pot synthesis, co-synthesis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
This thesis includes the review on the recent progress of mesoporous silicas and metal-containing mesoporous materials as well as the report on preparation and characterization of highly dispersed palladium nanoparticles containing mesoporous silicas MCM-41 and MCM-48 which were prepared through one-pot synthesis. The complex-surfactant aggregates [CTA]2[PdBr4] were considered to be generated in the presence of a large amount of CTAB. The synthesis of MCM-41 mesophase templated by CTA+ surfactant and the generation of PdO species through the reaction between [PdBr4]2□ and hydroxide anion may occur simultaneously. Those PdO nanoparticles were reduced to Pd metal by hydrogen treatment and found to stay inside the mesochannels of MCM-41 as detected by TEM, XAS, and PXRD. In hydrothermal synthesis of Pd/MCM-48, Pd nanoparticles of average size 7 nm were found to be deposited on the MCM-48, probably derived from ethanol reduction of Pd (II) complex. Moreover, the template removal from MCM-41 was observed to be catalyzed by Pd(0) nanoparticles.
1. J. S. Brandley, “Clusters anf Colloids”, G. Schmid, Weinheim (1994)
2. U. Ciesla, F. Schuth, Micropor. Mesopor, Mater. 1999, 27, 131.
3. C.T. Kresge, M. E. Leonowiez, W. J. Roth, J. C. Vartuli, J.S. Beck, Nature, 1992, 359, 710.
4. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D.Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. Mccullen, J.B.Higgius, J.L. Schlenker, J. Am. Chem. Soc. 1992, 114, 10834.
5. S. Inagaki, Y. Fukushima, K. Kuroda, J. Chem. Soc., Chem. Commun. 1993, 680.
6. N. K. Raman, M. T. Anderson, C. J. Brinker, Chem. Mater. 1996, 8, 1682.
7. X. S. Zhao, Q. G. Lu, G. J. Millar, Ind. Eng. Chem. Res., 1996, 35, 2075.
8. C. J. Brinker, Y. Lu, A. Selling, H. Fan, Adv. Mater. 1999, 11, 579
9. Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schüth, G. D Stucky, Nature, 1994, 368, 317.
10. Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schüth, G. D. Stucky, Chem. Mater,. 1994, 6, 1176.
11. U. Ciesla, D. Demuth, R. Leon, P. Petroff, G. D. Stucky, K. Unger, F. Schüth, J. Chem. Soc., Chem. Commun., 1994, 1387.
12. P. T. Tanev, T. J. Pinnavaia, Science 1995, 267, 865.
13. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc. 1998, 120, 6024.
14. G. J. D. A. A. Soler-illia, C. Sanchez, B. Lebeau, J. Patarin, Chem. Rev. 2002, 102, 4093.
15. N. Israelachvili, D. J. Mitchell, B. W. Niham, J. Chem. Soc.,Faraday Trans. 2, 1976, 72, 1525.
16. Q. Huo, R. Leon, P. M. Petroff, G. D. Stucky, Science, 1995, 268, 1324.
17. S. H. Tolbert, C. C. Landry, G. D. Stucky, B. F. Chmelka, P. Norby, J. C. Hanson, A. Monnier, Chem. Mater., 2001, 13, 2247.
18. R. Long, R.T. Yang, Catal. Lett., 1998, 52, 91.
19. Q.H. Xia, K. Hidajat, S. Kawi, Catal. Today, 2001, 68, 255.
20. (a)U. Junges, W. Jacobs, I. Voigt-Martin, B. Krutzsch, F. Schüth, J. Chem. Soc., Chem. Commun., 1995, 2283. (b) J. Michalik, D. Brown, J.-S. Yu, M. Danilczuk, J.Y. Kim, L. Kevan, Phys. Chem. Chem. Phys., 2001, 3, 1705.
21. P. Yang, D. Zhao, B. F. Chemelka, G. D. Stucky, Chem. Mater,. 1998, 10, 2033.
22. K. B. Lee, S. M. Lee, J. Cheon, Adv. Mater., 2001, 13, 517.
23. M. Okumura, S. Nakamura, S. Tsubota, T. Nakamura, M. Azuma, M. Haruta, Catal.Lett., 1998, 51, 53.
24. D. Zhao, P. Yang, N. Melosh, J. Feng, B. F. Chmelka, G. D. Stucky, Adv. Mater., 1998, 10, 1380.
25. (1)T. A. Doorling, B. W. J. Lynch, R. L. Moss, J. Catal., 1971, 20, 106. (2)J. R. Anderson, “ Structure of Metallic Catalysis ”, Academic, New York (1975) 164.
26. C. M. Yang, H. S, Sheu, K. J. Chao, Adv. Funct. Mater., 2002, 12, 143.
27. C. M Yang, P. H. Liu, Y. H. Ho, C. Y. Chiu, K. J. Chao, Chem. Mater., 2003, 15, 275.
28. C.L. Wang , G. S. Zhu , J. Li , X. H. Cai , Y. H. Wei , D. L. Zhang , S. L. Qiu, Chemistry -A European Journal, 2005, 11, 4975.
29. Y. Jiang, Q. Gao, J. Am. Chem. Soc., 2006, 128, 716.
30. R. M. Rioux, H. Song, J. D. Hoefelmeyer, P. Yang, G. A. Somorjai, J. Phys. Chem. B, 2005, 109, 2192.
31. Z. Konya, V. F. Puntes, I. Kiricsi, J. Zhu, A. P. Alivisatos, G. A. Somorjai, Catal. Lett., 2002, 81, 137.
32. J. Zhu, Z. Kónya, V. F. Puntes, I. Kiricsi, C. X. Maio, J. W. Ager, A. P. Alivisatos, G. A. Somorjai, Langmuir, 2003, 19, 4396.
33. H. Zhu, B. Lee, S. Dai, S. Overbury, Langmuir, 2003, 19, 3974.
34. O. Dag, O. Samarskaya, N. Coombs, G. A. Ozin, J. Mater. Chem., 2003, 13, 328.
35. C. Aprile, A. Abad, H. Garcıa, A. Corma, J. Mater. Chem., 2005, 15, 4408
36. P. Krawiec, E. Kockrick, P. Simon, G. Auffermann, S. Kaskel, Chem. Mater., 2006, 18, 2663.
37. C. Y. Chen, H. X. Li, M. E. Davis, Microporous Mat., 1993, 2, 17.
38. X. S. Zhao, C. Q. Lu, A. K. Whittaker, G. J. Millar, H. Y. Zhu, J. Phys. Chem. B, 1997, 101, 6525.
39. F. Kleitz, W. Schmidt, F. Schüth, Microporous Mesoporous Mater., 2003, 65, 1.
40. F. Kleitz, W. Schmidt, F. Schüth, Microporous Mesoporous Mater. 2001, 65, 95.
41. M. T. J. Keene, R. D. M. Gougeon, R. Denoyl, R. H. Harris, J. Rouquerol, P. L. Llewellyn, J. Mater. Chem., 1999, 9, 2843.
42. R. Schmidt, D. Akporiaye, M. StoÈ cker and O. H. Ellestad, Stud. Surf. Sci. Catal., 1994, 84, 61.
43. J. Ryczkowski, J. Goworek, W. Gac, S. Pasieczna, T. Borowiecki, Thermochimica Acta, 2005, 434, 2.
44. J. Goworek, A. Borowka, R. Zalewski, R. Kusak, J. Therm. Anal. Calorim. 2005, 79, 555
45. J. Patarin, Angew. Chem., Int. Ed. 2004, 43, 3878.
46. Z. Huang, L. Huang, S. C. Shen, C. C. Poh, K. Hidajat, S. Kawi, S. C. Ng, Microporous Mesoporous Mater. 2005, 80, 157.
47. W. A. Gornes, L. A. M. Cardoso, A. R. E. Gonzaga, L. G. Aguiar, H. M. C. Andrade, Mater. Chem. Phys. 2005, 93, 133.
48. M. T. J. Keene, R. Denoyel, P. L. Llewellyn, Chem. Commun., 1998, 2203.
49. G. BIchel, R. Denoyel, P. L. Llewellyn, J. Rouquerol, J. Mater. Chem., 2001, 11,589.
50. A. N. Parikh, A. Navrotsky, Q. H. Li, C. K. Yee, M. L. Amweg, A. Corma, Microporous Mesoporous Mater. 2004, 76, 17.
51. P. T. Tanev, T. J. Pinnavaia, Chem. Mater., 1996, 8, 2068.
52. C. W. Jones, K. Tsuji, T. Takewaki, L. W. Beck, M. E. Davis, Microporous Mesoporous Mater. 2001, 48, 57.
53. X. B. Lu, W. H. Zhang, R. He, X. Li, Ind. Eng. Chem. Res., 2003, 42, 653.
54. C. N. Wu, T. S. Tsai, C. N. Liao, K. J. Chao, Microporous Mater., 1996, 7, 173.
55. C. F. Baes, R. E. Mesmer, “The Hydrolysis of Cations”, Krieger, Malabar, FL., 1986, p.266.
56. R. Ryoo, S. H. Joo, J. M. Kim, J. Phys. Chem. B, 1999, 103, 7435.
57. C. N. Wu, T. S. Tsai, C. N. Liao, K. J. Chao, Microporous Mater., 1996, 7, 173.
58. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc., 1998, 120, 6024.
59. B. D. Cullity, S. R. Stock, “Elements of X-ray diffraction”, Prentice Hall (2001).
60. F. Rouquerol, J. Rouquerol, K. Sing, “Adsorption by Powders and Porous Solids”, Academic Press (1999).
61. R. Ryoo, S. H. Joo, J. M. Kim, J. Phys. Chem. B, 1999, 103, 7435.
62. E. A. Stern, M. Newville, B. Ravel, Y. Yacoby, D. Haskel, Physica B, 1995, 208-209, 117.
63. K. Okumura, M. Niwa, J. Phys. Chem. B, 2000, 104, 9670.
64. D. D. L. Chung, P. W. De Haven, H. Arnold, D. Ghosh, “X-Ray Diffraction at Elevated Temperatures: A Method for In-Situ Process Analysis”, VCH Publishers, New York (1993).
65. F. A. Lewis, “The Palladium Hydrogen System”, Academic Press, London / New York, (1967).
66. S. C. Srivastava, L. Newman, Inorg. Chem., 1966, 5, 1506.
67. B. Veisz, Z. Kiraly, Langmuir, 2003, 19, 4817.
68. H. P. Lin, C. Y. Mou, Acc. Chem. Res., 2002, 35, 927.
69. Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schüth, G. D. Stucky, Nature 1994, 368, 317.
70. Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schüth, G. D. Stucky, Chem. Mater., 1994, 6, 1176.
71. O. T. HOGDAHL, “The Radiochemistry of Palladium”, National Academy of Sciences, NAS-NS. 3052, (1961).
72. E. Negishi, A. de Meijere, “Handbook of Organopalladium Chemistry for Organic Synthesis”, John Wiley & Sons, New York, (2002).
73. R. Schmidt, D. Akporiaye, M. StoÈ cker and O. H. Ellestad, Stud. Surf. Sci. Catal., 1994, 84, 61.
74. A. Montes, E. Cosenza, G. Giannetto, E. Urquieta, R. A. de Melo, N. S. Gnep and M. Guisnet, Stud. Surf. Sci. Catal., 1998, 117, 237.
75. F. Kleitz, W. Schmidt, F. Schüth, Microporous Mesoporous Mater., 2003, 65, 1.
76. F. Kleitz, W. Schmidt, F. Schüth, Microporous Mesoporous Mater., 2001, 65, 95.