研究生: |
翟瑞元 Chai, Jui-Yuan |
---|---|
論文名稱: |
具功因調控前級轉換器切換式磁阻馬達驅動系統之建構及控制 DEVELOPMENT AND CONTROL OF A SWITCHED-RELUCTANCE MOTOR DRIVE WITH POWER FACTOR CORRECTION FRONT-END |
指導教授: |
廖聰明
Liaw, Chang-Ming |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 188 |
中文關鍵詞: | 換相時刻位移 、電流控制 、電流波形規範 、數位控制 、諧波補償 、非線性行為 、功因修正 、隨機切換 、強健控制 、頻譜整形 、速度控制 、速度紋波 、切換式磁阻馬達 、切換式整流器 、振動 、升壓 |
外文關鍵詞: | commutation instant shift, current control, current profiling, digital control, harmonic compensation, nonlinear behavior, power factor correction, random switching, robust control, spectrum shaping, speed control, speed ripple, switched-reluctance motor, switch-mode rectifier, vibration, voltage boosting |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在建構一以前端切換式整流器供電之切換式磁阻馬達驅動系統及從事其振動與速度紋波降低之研究。首先探究切換式磁阻馬達之主導方程式,並據以建立一切換式磁阻馬達驅動平台。接著,在探究切換式磁阻馬達之振動來源及暨有一些解決方法後,提出五種降低振動之切換控制方法並比較評估其效果,此五種方法包括隨機頻率脈寬調變、導通及截止角度同步前移、截止角之隨機化改變、電流下降波形規範、以及電流下降規範結合換相位置前移。
再者,本論文建構一以前端單相切換式整流器供電之切換式磁阻馬達驅動系統,以獲得良好之馬達驅動性能及交流端入電電力品質。在前端單相切換式整流器之控制上,先妥善設計其電力電路,並依所觀得之非線性現象發展出簡易之電壓強健控制機構,並探究其調適機制以避免非線性不穏定現象之產生。隨後藉由所發展之強健電流及速度控制方法,以增進馬達之動態響應及降低其振動。此外,進一步結合換相前移方法,以得更佳之馬達驅動性能。
對較高額定之電力電子系統而言,三相電源入電係自然之選擇。因此,本論文亦建構一個三相單開關切換式整流器,並作為切換式磁阻馬達之前端轉換器。所提動態控制方法係將入電線電流及輸出電壓之紋波視為擾動信號,並藉由所提之擾動消除強健控制予以降低。在三相電源平衡之狀況下,將一相之線電流經由帶阻濾波、相位移及數位三相全波整流後,合成一脈寬調變補償控制電壓。另外,亦提出三相不平衡下之修正控制方法。在輸出電壓強健控制方面,提出根據負載程度自動調適強健消除加權之方法,以獲得折衷良好之電壓動態及電力品質控制性能。因此,可自動地避免三相切換式整流器之非線性渾沌現象之發生,同時獲得較佳之操控性能。
最後,本論文提出一智慧型強健誤差適應電流波形規範方法以降低切換式磁阻馬達之速度紋波,同時亦可降低馬達定子振動。於所提方法中,在線圈電流命令波形之前緣自動疊加一由直流鏈負電流突波產生之補償成份,再利用所提強健電流誤差消除控制以增進線圈電流波形之追蹤緊密度,及獲得較平順之馬達產生轉矩。接著利用所提之強健速度紋波消除控制直接降低速度之紋波。同樣地,亦應用換相前移策略改善換相期間兩重疊相線圏之轉矩分配特性,以進一步降低馬達之速度紋波,同時也降低切換式磁阻馬達之定子振動及改善其轉矩產生能力。
This dissertation is mainly concerned with the establishment of a switch-mode rectifier (SMR) fed switched-reluctance motor (SRM) drive and its vibration and speed ripple reductions. First, the basics and governing equations of a SRM are studied, and a digital signal processor (DSP) based SRM drive is constructed. Secondly, the origins of vibration and the existing remedies of SRM are explored. Then five reduction control approaches are developed and comparatively evaluated. These approaches include random frequency pulse width modulation (RFPWM) with harmonic spectrum shaping, commutation advanced shift with fixed dwell angle, randomizing turn-off angle, current tail profiling without and with commutation advanced shift.
Thirdly, a single-phase SMR-fed SRM drive is established to yield good motor driving performance and line drawn power quality. In the front-end SMR, its power circuit is properly designed, and according to the observed nonlinear phenomena, a simple robust voltage control scheme is proposed. Furthermore, the adaptation of key robust control parameter is made to avoid the occurrence of nonlinear instability. Then the performance enhancements of SRM drive in vibration and dynamic responses are achieved by the proposed robust current and speed control schemes. In addition, these performances are further improved via commutation advanced shift.
For a power electronic system with higher rating, the three-phase source is a natural selection. Hence, the SRM drive is also powered by the developed three-phase single-switch (3P1SW) SMR. In handling its dynamic control, the undesired line current and output voltage ripples of this SMR are regarded as disturbances and reduced via the proposed disturbance cancellation robust controls. Under balanced three-phase case, the injected PWM compensated control voltage is synthesized from one line current through notch filtering, phase shifting and digital three-phase full-wave rectification process. And the control modification for unbalanced three-phase cases is also proposed. In making the output voltage robust control, the robust cancellation weighting factor is automatically tuned according to load level to yield compromised voltage dynamic and power quality control performances. The chaotic phenomena can be automatically avoided, and better SMR operating performance is obtained simultaneously.
Finally, this dissertation presents the speed ripple reduction control for a SRM drive via intelligent and robust error adapted current profiling approach, meanwhile the stator vibration is also effectively reduced. In the proposed approach, the leading edge of winding current command is automatically profiled by adding a compensating component, which is generated from the DC-link negative stroke spikes caused by non-ideal commutation behavior of SRM load. Then a robust current error cancellation control scheme is designed to yield the closer current waveform tracking response, and thus the smoother motor developed torque. In outer-loop, a robust speed ripple cancellation control scheme is employed to directly reduce speed ripple. Similarly, the commutation advanced shift is also applied to further reduce the speed ripple due to the improvement in torque sharing characteristics of two adjacent phase windings in commutation period. In addition, the reduced vibration and the improved torque per ampere capability of SRM are further obtained.
A. Fundamentals of SRM
[1] T. J. E. Miller, Switched reluctance motors and their Control, Oxford, Clarendon Press, 1993.
[2] R. Krishnan, Switched reluctance motor drives: modeling, simulation, analysis, design, and applications, New York: CRC Press, 2001.
[3] P. C. Sen, Principles of electric machines and power electronics, 2nd ed., New Jersey: John Wiley & Sons, Inc., 1997.
[4] H. H. Moghbelli and M. H. Rashid, “Performance review of the switched reluctance motor drives,” in Proc. IEEE SCAS, 1991, vol. 1, pp. 162-165.
[5] H. C. Lovatt, M. C. Clelland and J. M. Stephenson, “Comparative performance of singly salient reluctance, switched reluctance and induction motors,” in Proc. IEE Conf. Elect. Mach. and Drives, 1997, pp. 361-365.
[6] M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: a comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006.
[7] M. Krishnamurthy, C. S. Edrington, A. Emadi, P. Asadi, M. Ehsani and B. Fahimi, “Making the case for applications of switched reluctance motor technology in automotive products,” IEEE Trans. Power Electron., vol. 21, no. 3, pp. 659–675, 2006.
[8] Z. Qianfan, C. Shumei and T. Xinjia, “Hybrid switched reluctance motor applied in electric vehicles,” in Proc. IEEE VPPC, 2007, pp. 359-363.
[9] M. Cacciato, A. Consoli, G. Scarcella and G. Scelba, “A switched reluctance motor drive for home appliances with high power factor capability,” in Proc. IEEE PESC, 2008, pp. 1235-1241.
[10] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
[11] A. V. Radun, “Design considerations for the switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 31, no. 5, pp. 1079-1087, 1995.
[12] J. Hur, G. H. Kang, J. Y. Lee, J. P. Hong and B. K. Lee, “Design and optimization of high torque, low ripple switched reluctance motor with flux barrier for direct drive,” in Proc. IEEE IAS, 2004, vol. 1, pp.401-408.
[13] H. A. Ashour, D. S. Reay and B. W. Williams, “Shunt-excited doubly salient 8/6-switched reluctance machine,” IEE Proc. Elect. Power Applicat., vol. 147, no. 5, pp. 391-401, 2000.
[14] V. P. Vujicic, S. N. Vukosavic amd M. B. Jovanovic, “Asymmetrical switched reluctance motor for a wide constant power range,” IEEE Trans. Energy Convers., vol. 21, no. 1, pp. 44-51, 2006.
[15] Y. Ohdachi, Y. Kawase, Y. Miura, and Y. Hayashi, “Optimum design of switched reluctance motors using dynamic finite element analysis,” IEEE Trans. Magn., vol. 41, no. 2, pp. 2033-2036, 1997.
[16] A. M. Omekanda, “Robust torque and torque-per-inertia optimization of a switched reluctance motor using the Taguchi methods,” IEEE Trans. Ind. Applicat. vol. 42, no. 2, pp. 473-478, 2006.
B. Converters Circuits
[17] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Applicat., vol. 27, no. 6, pp. 1034-1049, 1991.
[18] M. Barnes and C. Pollock, “Power electronic converters for switched reluctance drives,” IEEE Trans. Power Electron., vol. 13, pp. 1100-1111, 1998.
[19] D. H. Jang, I. Husain and M. Ehsani, “Modified (n+1) switch converter for switched reluctance motor drives,” in Proc. IEEE PESC, 1995, vol. 2, pp. 1121-1127.
[20] D. H. Jang, “The converter topology with half bridge inverter for switched reluctance motor drives,” in Proc. IEEE ISIE, 2001, vol. 2, pp. 1387-1392.
[21] S. J. Watkins, J. Corda and L. Zhang, “Multilevel asymmetric power converters for switched reluctance machines,” in Proc. IEE Conf. Power Elect. Mach. and Drives, 2002, no. 487, pp. 195-200.
[22] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Applicat., vol. 38, no. 6, pp. 1558-1565, 2002.
[23] A. M. Hava, V. Blasko and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Applicat., vol. 28, no. 5, pp. 1017-1022, 1992.
[24] S. Bolognani, E. Ognibeni and M. Zigliotto, “Sliding mode control of the energy recovery chopper in a C-dump switched reluctance motor drive,” IEEE Trans. Ind. Applicat., vol. 29, no.1, pp. 181-186, 1993.
[25] S. Mir, I. Husain and M.E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, pp. 912-921, 1997.
[26] K. J. Tseng, S. Cao and J. Wang, “A new hybrid C-dump and buck-fronted converter for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 47, no. 6, pp. 1228-1236, 2000.
[27] K. D. Kim, D. J. Shin and U. Y. Huh, “Application modified C-dump converter for industrial low voltage SRM,” in Proc. IEEE ISIE, 2001, vol. 3, pp. 1804-1809.
[28] S. Chan, “Performance enhancement of single-phase switched reluctance motor by DC link voltage boosting,” IEE Proc. Elect. Power Applicat., 1993, vol. 140, no. 5, pp. 316-322.
[29] Y. G. Dessouky, B. W. Williams and J. E. Fletcher, “A novel power converter with voltage-boosting capacitors for a four-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 815-823, 1998.
[30] A. Dahmane, F. Meebody and F. M. Sargos, “A novel boost capacitor circuit to enhance the performance of the switched reluctance motor,” in Proc. IEEE PESC, 2001, vol. 2, pp. 844-849.
[31] M. Barnes and C. Pollock, “Forward converters for dual voltage switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 16, no. 1, pp. 83-91, 2001.
[32] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Elect. Power Applicat., vol. 147, no. 5, pp. 337-344, 2000.
[33] H. L. Huy, K. Slimani and P. Viarouge, “A current-controlled quasi-resonant converter for switched-reluctance motor,” IEEE Trans. Ind. Electron., vol. 38, no. 5, pp.355-362, 1991.
[34] Y. Murai, J. Cheng and M. Yoshida, “New soft-switched reluctance motor drive circuit,” in Proc. IEEE IAS, 1997, vol. 1, pp. 676-681.
[35] K. T. Chau, T. W. Ching, C. C. Chan and M. S. W. Chan, “A novel zero-current soft-switching converter for switched reluctance motor drives,” in Proc. IEEE IECON, 1998, vol. 2, pp. 893-898.
[36] C. K. Pan, A DSP-based soft-switching converter-fed switched reluctance motor drive, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2003.
[37] S. K. Sul and S. J. Lee, “An integral battery charger for four-wheel drive electric vehicle,” IEEE Trans. Ind. Appl., vol. 31, no. 5, pp. 1096-1099, 1995.
[38] K. T. Weng and C. Pollock, “Low-cost battery-powered switched reluctance drives with integral battery-charging capability,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1676-1681, 2000.
[39] P. Vijayraghavan and R. Krishnan, “Front-end buck converter topology for SRM drives-design and control,” in Proc. IEEE IECON, 2003, vol. 3, pp. 3013-3018.
[40] T. Gopalarathnam and H. A. Toliyat, “A high power factor converter topology for switched reluctance motor drives,” in Proc. IEEE IAS, 2002, vol. 3, pp. 1647-1652.
C. Dynamic Modeling and Control
[41] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Applicat., vol. 36, pp. 714-722, 2000.
[42] B. P. Loop and S. D. Sudhoff, “Switched reluctance machine model using inverse inductance characterization,” IEEE Trans. Ind. Applicat., vol. 39, no. 3, pp. 743-751, 2003.
[43] D. N. Essah and S. D. Sudhoff, “An improved analytical model for the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 349-356, 2003.
[44] V. Vujicic and S.N. Vukosavic, “A simple nonlinear model of the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 15, no. 4, pp. 395-400, 2000.
[45] S. Liu, Z. Zhao, S. Meng and J. Chai, “A nonlinear analytical model for switched reluctance motor,” in Proc. IEEE TENCON, 2002, vol. 3, pp. 2034-2037.
[46] L. Xu and E. Ruckstadter, “Direct modeling of switched reluctance machine by coupled field-circuit method,” IEEE Trans. Energy Convers., vol. 10, no. 3, pp. 446-454, 1995.
[47] S. Cao, and K. J. Tseng, “Evaluation of neighboring phase coupling effects of switched reluctance motor with dynamic modeling approach,” in Proc. IEEE IPEMC, 2000, vol. 2, pp. 881-886.
[48] B. C. Mecrow, C. Weiner and A. C. Clothier, “The modeling of switched reluctance machines with magnetically coupled windings,” IEEE Trans. Ind. Applicat., vol. 37, no. 6, pp. 1675-1683, 2001.
[49] F. R. Salmasi and B. Fahimi, “Modeling switched-reluctance machines by decomposition of double magnetic saliencies,” IEEE Trans. Magn., vol. 40, no. 3, pp. 1562-1572, 2004.
[50] O. Ichinokura, T. Onda, M. Kimura, T. Watanabe, T. Yanada and H. J. Guo, “Analysis of dynamic characteristics of switched reluctance motor based on SPICE,” IEEE Trans. Magn., vol. 34, pp. 2147-2149, 1998.
[51] X. Wang and J. S. Lai, “Small-signal modeling and control for PWM control of switched reluctance motor drives,” in Proc. IEEE IAS, 2002, vol. 2, no. 1, pp. 546-551.
[52] S. A. Hussain and I. Husain, “Modeling, simulation and control of switched reluctance motor drives,” in Proc. IEEE IECON, 2003, vol. 3, pp. 2447-2452.
[53] K. N. Srinivas and R. Arumugam, “Dynamic characterization of switched reluctance motor by computer-aided design and electromagnetic transient simulation,” IEEE Trans. Magn., vol. 39, no. 3, pp.1806-1812, 2003.
[54] J. Mahdavi, G. Suresh, B. Fahimi and M. Ehsani, “Dynamic modeling of nonlinear SRM drive with Pspice,” in Proc. IEEE IAS, 1997, vol.1 pp.661-667.
[55] S. K. Sahoo, Q. Zheng, S. K. Panda and J. X. Xu, “Model-based torque estimator for switched reluctance motors,” in Proc. IEEE PEDS, 2003, vol. 2, pp. 959-963.
[56] A. D. Cheok and N. Ertugrul, “Use of fuzzy logic for modeling, estimation, and prediction in switched reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 46, no. 6, pp. 1207-1224, 1999.
[57] W. Lu, A. Keyhani and A. Fardoun, “Neural network-based modeling and parameter identification of switched reluctance motors,” IEEE Trans. Energy Convers., vol. 18, pp. 284-290, 2003.
[58] K. I. Hwu, Development of a switched reluctance motor drive, Ph.D. Dissertation, Deparment of Electrical Engineering, National Tsing Hua University, ROC, 2001.
[59] M. T. DiRenzo, M. K. Masten and C. P. Cole, “Switched reluctance motor control techniques,” in Proc. IEEE ACC, 1997, vol. 1, pp. 272-277.
[60] N. A. Patil and J. S. Lawler, “Issues in the control of the switched reluctance motor during continuous conduction,” in Proc. IEEE NAPS, 2007, pp. 534-540.
[61] S. Song, W. Liu and Y. Wang, “Modeling, dynamic simulation and control of a four-phase switched reluctance motor,” in Proc. IEEE ICCA, 2007, pp. 1290-1295.
D. Current Control
[62] H. K. Bae and R. Krishnan, “A study of current controllers and development of a novel current controller for high performance SRM drives,” in Proc. IEEE IAS, 1996, vol. 1, pp. 68-75.
[63] F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 563-572, 1999.
[64] R. B. Inderka, M. Menne, R. W. A. A. De Doncker, “Control of switched reluctance drives for electric vehicle applications” IEEE Trans. Ind. Electron., vol. 49, pp. 48-53, 2002.
[65] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Applicat., vol. 39, no. 4, pp. 1118-1126, 2003.
[66] P. Srinivas and P. V. N. Prasad, “Voltage control and hysteresis current control of a 8/6 switched reluctance motor,” in Proc. ICEMS, 2007, pp. 1557-1562.
[67] M. R. Benhadria, K. Kendouci and B. Mazari, “Torque ripple minimization of switched reluctance motor using hysteresis current control,” in Proc. IEEE ISIE, 2006, pp. 2158-2162.
[68] G. G. Lopez and K. Rajashekara, “Peak PWM current control of switched reluctance and AC machines,” in Proc. IEEE IAS, 2002, vol. 2, pp. 1212-1218.
[69] L. Ben Amor, L.-A. Dessaint, and O. Akhrif, “Switched reluctance motor torque control with peak current minimization,” in Proc. IEEE IECON, 2004, vol. 2, pp. 1885-1890.
[70] Z. Lin, D. S. Reay, B. W. Williams and X. He, “High performance current control for switched reluctance motors with on-line modeling,” in Proc. IEEE PESC, 2004, vol. 2, pp. 1246-1251.
[71] I. S. Manolas, A. X. Kaletsanos, and S. N. Manias, “Nonlinear current control technique for high performance switched reluctance machine drives,” in Proc. IEEE PESC, 2008, pp. 1229-1234.
[72] L. N. R. Laurinda, A. A. R. Coelho, M. A. J. Otacflio, and N. A. Romulo, “Current control of switched reluctance motor based on generalized minimum variance controller,” in Proc. IEEE ACC, 2007, pp. 3541-3545.
[73] R. Jeyabharath, P. Veena and M. Rajaram, “A novel DTC strategy of torque and flux control for switched reluctance motor drive,” in Proc. IEEE PEDS, 2006, pp. 1-5.
[74] S. K. Sahoo, S. K. Panda and J. X. Xu, “Application of spatial iterative learning control for direct torque control of switched reluctance motor drive,” in Proc. IEEE PES, 2007, pp. 1-7.
E. Speed Control
[75] S. K. Panda and P. K. Dash, “Application of nonlinear control to switched reluctance motors: a feedback linearization approach,” IEE Proc. Elect. Power Applicat., 1996, vol. 143, no. 5, pp. 371-379.
[76] M. T. Alrifai, J. H. Chow and D. A. Torrey, “Backstepping nonlinear speed controller for switched-reluctance motors,” IEE Proc. Elect. Power Applicat., 2003, vol. 150, no. 2, pp. 193-200.
[77] G. John and A. R. Eastham, “Speed control of switched reluctance motor using sliding mode control strategy,” in Proc. IEEE IAS, 1995, vol. 1, pp. 263-270.
[78] C. Bian, Y. Man, C. Song and S. Ren, “Variable structure control of switched reluctance motor and its application,” in Proc. IEEE WCICA, 2006, vol. 1, pp. 2490-2493.
[79] M. A. A. Morsy, M. S. A. Moteleb and H. T. Dorrah, “Development of robust fuzzy sliding mode control technique for nonlinear drive systems,” in Proc. IEEE MHS, 2006, pp. 1-6.
[80] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
[81] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor,” IEE Proc. Elect. Power Applicat., 2001, vol. 148, no. 4.
[82] C. Lucas, M. M. Shanehchi, P. Asadi and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE IAS, 2000, vol. 3, pp. 1573-1577.
[83] G. John and A. R. Eastham “Robust speed control of a switched reluctance drive,” in Proc. IEEE CCECE, 1993. pp. 317-320.
[84] J. Y. Seo, H. R. Cha, H. Y. Yang, J. C. Seo, K. H. Kim, Y. C. Lim and D. H. Jang, “Speed control method for switched reluctance motor drive using self-tuning of switching angle,” in Proc. IEEE ISIE, 2001, vol. 2, pp. 811-815.
[85] S. K. Panda, X. M. Zhu and P. K. Dash, “Fuzzy gain scheduled PI speed controller for switched reluctance motor drive,” in Proc. IEEE IECON, 1997, vol. 3, pp. 989-994.
[86] B. Singh, V. K. Sharma and S. S. Murthy, “Performance analysis of adaptive fuzzy logic controller for switched reluctance motor drive system,” in Proc. IEEE IAS, 1998, vol. 1, pp. 571-579.
[87] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
F. Commutation Tuning and Performance Optimization
[88] D. A. Torrey and J. H. Lang, “Optimal-efficiency excitation of variable-reluctance motor drives,” IEE Proc. Elect. Power Applicat., 1991, vol. 138, no. 1, pp. 1-14.
[89] P. C. Kjaer, P. Nielsen, L. Andersen and F. Blaabjerg, “A new energy optimizing control strategy for switched reluctance motors,” IEEE Trans. Ind. Applicat., vol. 31, no. 5, pp. 1088-1095, 1995.
[90] J. P. Hong, B. S. Choi, S. J. Park, S. J. Kwon and M. H. Lee, “Switching angle control of the SRM for maximization of energy conversion ratio,” in Proc. IEEE/ASME AIM, 2003, vol. 2 , pp. 1151-1159.
[91] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[92] A. C. Koenig, S. D. Pekarek, and P. Lamm, “A PI-based control strategy for mitigation of torque harmonics in switched reluctance motor drives,” in Proc. IEEE APEC, 2008, pp. 363-369.
[93] J. J. Gribble, P. C. Kjaer and T. J. E. Miller, “Optimal commutation in average torque control of switched reluctance motors,” IEE Proc. Elect. Power Applicat., 1999, vol. 146, no. 1, pp. 2-10.
[94] R. Orthmann and H.P. Schoner, “Turn-off angle control of switched reluctance motors for optimum torque output,” in Proc. IEE Conf. Power Electron. and Applicat., 1993, vol. 6, pp. 20-25.
[95] A. V. Rajarathnam, B. Fahimi and M. Ehsani, “Neural network based self-tuning control of a switched reluctance motor drive to maximize torque per ampere,” in Proc. IEEE IAS, 1997, vol. 1, pp. 548-555.
[96] B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen and I. Panahi, “Self-tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” in Proc. IEEE APEC, 1998, vol. 2, pp. 778-783.
[97] K.I. Hwu and C.M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
G. Vibration and Acoustic Noise Reductions
[98] D. E. Cameron, J. H. Lang and S. D. Umans, “The origin of acoustic noise in variable-reluctance motors,” in Proc. IEEE IAS, 1989, vol. 1, pp. 108-115.
[99] D. E. Cameron, J. H. Lang and S. D. Umans, “The origin and reduction of acoustic noise in doubly salient variable-reluctance motors,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 1250-1255, 1992.
[100] R. S. Colby, F. M. Mottier and T. J. E. Miller, “Vibration modes and acoustic noise in a four-phase switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 32, no. 2, pp. 1357-1364, 1996.
[101] M. Gabsi, F. Camus, T. Loyau and J. L. Barbry, “Noise reduction of switched reluctance machine,” in Proc. IEEE IEMD, 1999, pp. 263-265.
[102] W. Cai, P. Pillay, Z. Tang and A. Omekanda, “Experimental study of vibrations in the switched reluctance motor,” in Proc. IEEE IEMD, 2001, vol. 1, pp. 576-581.
[103] W. Cai and P. Pillay, “Design and control of switched reluctance motors with low vibration and noise,” in Proc. IEEE IEMDC, 2007, vol. 2, pp. 1324-1331.
[104] B. Fahimi, G.. Suresh, K. M. Rahman and M. Ehsani, “Mitigation of acoustic noise and vibration in switched reluctance motor drive using neural network based current profiling,” in Proc. IEEE IAS, 1998, vol. 1, pp. 715-722.
[105] A. Michaelides and C. Pollock, “Reduction of noise and vibration in switched reluctance motors: new aspects,” in Proc. IEEE IAS, 1996, vol. 2, pp. 771-778.
[106] C. Pollock and C. Y. Wu, “Acoustic noise cancellation techniques for switched reluctance drives,” IEEE Trans. Ind. Appl., vol. 33, no. 1, pp. 477-484, 1997.
[107] P. Pillay and M. Cai, “An investigation into vibration in switched reluctance motors,” IEEE Trans. Ind. Appl., vol. 35, no. 3, pp. 589-596, 1999.
[108] R. Krishnan and P. Vijayraghavan, “State of the art: acoustic noise in switched reluctance motor drives,” in Proc. IEEE IECON, 1998, vol. 2, pp. 929-934.
[109] F. Blaabjerg and J. K. Pedersen, “Digital implemented random modulation strategies for AC and switched reluctance drives,” in Proc. IEEE IECON, 1993, vol. 2, pp. 676-682.
[110] Y. C. Im, K. H. Kim, S. H. Na, H. D. Kim and J. H. An, “Reduce acoustic noise in SRM using RPWM,” in Proc. KIPE Conf., Korea, 1998, pp. 189-192.
[111] T. Boukhobza, M. Gabsi and B. Grioni, “Random variation of control angles, reduction of SRM vibrations,” in Proc. IEEE IEMD, 2001, vol. 3, pp. 640-643.
[112] J. W. Ahn, S. J. Park and D. H. Lee, “Hybrid excitation of SRM for reduction of vibration and acoustic noise,” IEEE Trans. Ind. Electron., vol. 51, no. 2, pp. 374-380, 2004.
[113] K. H. Ha, Y. K. Kim, G. H. Lee and J. P. Hong, “Vibration reduction of switched reluctance motor by experimental transfer function and response surface methodology,” IEEE Trans. Ind. Electron., vol. 40, no. 2, pp. 577-580, 2004.
[114] H. Cailleux, B. L. Pioufle, B. Multon and C. Sol, “A precise analysis of the phase commutation for the torque nonlinear control of a switched reluctance motor-torque ripples minimization,” in Proc. IEEE IECON, 1993, vol. 3, pp. 1985-1990.
[115] H. C. Lovatt and J. M. Stephenson, “Computer-optimised smooth-torque current waveforms for switched-reluctance motors,” IEE Proc. Elect. Power Applicat., vol. 144, no. 5, pp. 310-316, 1997.
[116] P. L. Chapman and S. D. Sudhoff, “Optimized waveform control for an 8/6 switched reluctance motor drive,” in Proc. IEEE APEC, 2001, vol. 2, pp. 1096-1102.
[117] J. M. Stephenson, A. Hughes and R. Mann, “Torque ripple minimization in a switched reluctance motor by optimum harmonic current injection,” IEE Proc. Elect. Power Applicat., vol. 148, no. 4, pp. 322-328, 2001.
H. Torque Ripple Reduction of SRM
[118] I. Husain, “Minimization of torque ripple in SRM drive,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 28-39, 2002.
[119] Y. K. Choi, H. S. Yoon and C. S. Koh, “Pole-shape optimization of a switched-reluctance motor for torque ripple reduction,” IEEE Trans. Magn., vol. 43, no. 4, pp. 1797-1800, 2007.
[120] N. K. Sheth and K. R. Rajagopal, “Optimum pole arcs for a switched reluctance motor for higher torque with reduced ripple,” IEEE Trans. Magn., vol. 39, no. 5, pp. 3214-3216, 2003.
[121] R. S. Wallace and D. G. Taylor, “A balanced commutator for switched reluctance motors to reduce torque ripple,” IEEE Trans. Power Electron., vol. 7, pp. 617–626, 1992.
[122] A. M., Stankovic, G.. Tadmor, Z. J. Coric and I. Agirman, “On torque ripple reduction in current-fed switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 46, no. 1, pp. 177-183, 1999.
[123] L. Venkatesha and V. Ramanarayanan, “A comparative study of pre-computed current methods for torque ripple minimisation in switched reluctance motor,” in Proc. IEEE IAS, 2000, pp. 119-125.
[124] M. Kaiserseder, J. Schmid, W. Amrhein and V. Scheef, “Current shapes leading to positive effects on acoustic noise of switched reluctance drives,” Int. J. for Computation and Maths. in Electrical and Electronic Eng., vol. 22, no. 4, pp. 998-1008, 2003.
[125] S. K. Sahoo, S. K. Panda and J. X. Xu, “Indirect torque control of switched reluctance motors using iterative learning control,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 200-208, 2005.
[126] N. T. Shaked and R. Rabinovici, “New procedures for minimizing the torque ripple in switched reluctance motors by optimizing the phase-current profile,” IEEE Trans. Magn., vol. 41, no. 3, pp.1184-1192, 2005.
[127] L. O. A. P. Henriques, P. J. Costa Branco, L. G.. B. Rolim and W. I. Suemitsu, “Proposition of an offline learning current modulation for torque-ripple reduction in switched reluctance motors: design and experimental evaluation,” IEEE Trans. Ind. Electron., vol. 49, no. 3, pp. 665-676, 2002.
[128] Z. Lin, D. S. Reay, B. W. Williams and X. He, “On-line torque estimation in a switched reluctance motor for torque ripple minimization,” in Proc. IEEE IAS, 2004, pp. 981-985.
[129] N. Bhiwapurkar and N. Mohan, “Torque ripple optimization in switched reluctance motor using two-phase model and optimization search technique,” in Proc. IEEE SPEEDAM, 2006, pp. 340-345.
[130] J. M. Stephenson, A. Hughes and R. Mann, “Online torque-ripple minimization in a switched reluctance motor over a wide speed range,” IEE Proc. Elect. Power Applicat., vol. 149, no. 4, pp. 261-267, 2002.
[131] M. Rodrigues, P. J. Costa Branco and W. Suemitsu, “Fuzzy logic torque ripple reduction by turn-off angle compensation for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 48, no. 3, pp. 711-715, 2001.
[132] E. Bizkevelci, K. Leblebicioglu and H. B. Ertan, “A sliding mode controller to minimize SRM torque ripple and noise,” in Proc. IEEE ISIE, pp. 1333-1338, 2004.
[133] S. K. Sahoo, S. K. Panda and J. X. Xu, “Direct torque controller for switched reluctance motor drive using sliding mode control,” in Proc. IEEE PEDS, 2005, pp. 1129-1134.
[134] P. G. Barrass and B. C. Mecrow, “Flux and torque control of switched reluctance machines,” IEE Proc. Elect. Power Applicat., vol. 145, no. 6, pp. 519-527, 1998.
I. Switch-Mode Rectifiers
[135] N. Mohan, T. M. Undeland and W. P. Robins, Power electronics: converters, applications and design, 3rd Ed., John Wiley & Sons, New York, 2003.
[136] C. Qiao and K. M. Smedley, “A topology survey of single-stage power factor corrector with a boost type input-current-shaper,” IEEE Trans. Power Electron., vol. 16, no. 3, pp. 360-368, 2001.
[137] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[138] B. Singh, B. N. Singh and A. Chandra, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
[139] M. O. Eissa, S. B. Leeb, G. C. Verghese and A. M. Stankovic, “A fast analog controller for a unity-power-factor AC/DC converter,” in Proc. IEEE PESC, 1994, vol. 2, pp. 551-555.
[140] A. Prodic, J. Chen, R. W. Erickson and D. Maksimovic, “Digitally controlled low-harmonic rectifier having fast dynamic responses,” in Proc. IEEE APEC, 2002, vol. 1, pp. 476-482.
[141] T. Takeshita, Y. Toyoda and N. Matsui, “Harmonic suppression and DC voltage control of single-phase PFC converter,” in Proc. IEEE PESC, 2000, vol. 2, pp. 571-576.
[142] A. Prodic and D. Maksimovic, “Stability of the fast voltage control loop in power factor correctors,” in Proc. IEEE PESC, 2004, vol. 3, pp. 2320-2325.
[143] A. Prodic, D. Maksimovic and R. W. Erickson, “Dead-zone digital controller for improved dynamic response of power factor preregulators,” in Proc. IEEE APEC, 2003, vol. 1, pp. 382-388.
[144] A. Prodic, J. Chen, D. Maksimovic and R. W. Erickson, “Self-tuning digitally controlled low-harmonic rectifier having fast dynamic response,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 420-428, 2003.
[145] K. M. Tsang and W. L. Chan, “Adaptive control of power factor correction converter using nonlinear system identification,” IEE Proc. Elect. Power Applicat., vol. 152, no. 3, pp. 627-633, 2005.
[146] S. Buso and P. Mattavelli, “Simple digital control improving dynamic performance of power factor preregulators,” IEEE Trans. Power Electron., vol. 13, no. 5, pp. 814-823, 1998.
[147] Z. Z. Ye and M. M. Jovanovic, “Implementation and performance evaluation of DSP-based control for constant-frequency discontinuous-conduction-mode boost PFC front end,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 98-107, 2005.
[148] F. D. Kieferndorf, M. Forster and T. A. Lipo, “Reduction of DC-bus capacitor ripple current with PAM/PWM converter,” IEEE Trans. Ind. Applicat., vol. 40, no. 2, pp. 607-614, 2004.
[149] K. H. Kim and M. J. Youn, “Performance comparison of PWM inverter and variable DC link inverter schemes for high-speed sensorless control of BLDC motor,” Electronics Letters, vol. 38, no. 21, pp. 1294-1295, 2002.
[150] M. V. Aware, S. G. Tarnekar and A. G. Kothari, “Unity power factor and efficiency control of a voltage source inverter-fed variable-speed induction motor drive,” IEE Proc. Elect. Power Applicat., vol. 147, no. 5, pp. 422-430, 2000.
[151] S. Funabiki, N. Toita and A. Mechi, “A single-phase PWM AC to DC converter with a step up/down voltage and sinusoidal source current,” in Proc. IEEE IAS, 1991, vol. 1, pp. 1017-1022.
[152] M. Orabi and T. Ninomiya, “Nonlinear dynamics of power-factor-correction converter,” IEEE Trans. Ind. Electron., vol. 50, no. 6, pp. 1116-1125, 2003.
[153] H. H. C. Iu, Y. Zhou and C. K. Tse, “Fast-scale instability in a PFC boost converter under average current-mode control,” Int. J. Circ. Theor. Appl., vol. 31, pp. 611-624, 2003.
[154] P. Pejovic, “A novel low-harmonic three-phase rectifier,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 49, no. 7, pp. 955-965, 2002.
[155] J. Taotao, L. Li and K.M. Smedley, “A universal vector controller for four-quadrant three-phase power converters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 2, pp. 377-390, 2007.
[156] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[157] F. S. dos Reis, S. Islam, K. Tan, J. V. Ale, F. D. Adegas and R. Tonkoski, “Harmonic mitigation in wind turbine energy conversion systems,” in Proc. IEEE PESC, 2006, pp. 1-7.
[158] D. S. L. Simonetti, J. Sebastian and J. Uceda, “Single-switch three-phase power factor preregulator under variable switching frequency and discontinuous input current,” in Proc. IEEE PESC, 1993, pp. 944-950.
[159] K. Cai and Z. Xu, “A novel control method of three-phase single-switch boost power factor corrector under variable switching frequency,” in Proc. IEEE ICPST, 2002, vol. 1, pp. 565-569.
[160] P. Barbosa, F. Canales and F. C. Lee, “Passive input current ripple cancellation in three-phase discontinuous conduction mode rectifiers,” in Proc. IEEE PESC, 2001, vol. 2, pp. 1019-1024.
[161] Y. Jang and M. M. Jovanovic, “A comparative study of single-switch three-phase high power-factor rectifiers,” IEEE Trans. Ind. Applicat., vol. 34, no. 6, pp. 1327-1334, 1998.
[162] R. Zhang and F. C. Lee, “Optimum PWM pattern for a three-phase boost DCM PFC rectifier,” in Proc. IEEE PESC, 1997, vol. 2, pp. 895-901.
[163] J. Sun, N. Frohleke and H. Grotstollen, “Harmonic reduction techniques for single-switch three-phase boost rectifiers, in Proc. IEEE IAS, 1996, vol. 2, pp. 1225-1232.
[164] E. H. Ismail and R. Erickson, “Single-switch PWM low harmonic rectifiers,” IEEE Trans. Power Electron., vol. 11, no. 2, pp. 338-346, 1996.
[165] S. M. Bashi, N. Mariun, S. B. Noor and H. S. Athab, “Three-phase single switch power factor correction circuit with harmonic reduction,” Journal of Applied Sciences, pp. 80-84, 2005.
[166] D. Dai, S. Li, X. Ma and C. K. Tse, “Slow-scale instability of single-stage power-factor-correction power supplies,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 8, pp. 1724-1735, 2007.
J. SMR-Fed SRM Drive Systems
[167] J. H. Choi, J. S. Ahn and J. Lee, “The finite element analysis of switched reluctance motor considering asymmetric bridge converter and DC link voltage ripple,” IEEE Trans. Magn., vol. 41, no 5, pp. 1640-1643, 2005.
[168] D. Gerling and A. Schramm, “Optimization alternatives of mechatronic systems containing switched reluctance drives,” in Proc. IEEE/ASME AIM, 2005, pp. 916-921.
[169] K. Tsuno, T. Shimizu, K. Wada and K. Ishii, “Optimization of the DC ripple energy compensating circuit on a single-phase voltage source PWM rectifier,” in Proc. IEEE PESC, 2004, vol.1, pp. 316-321.
[170] R. Krishnan, “A novel converter topology for switched reluctance motor drives,” in Proc. IEEE PESC, 1996, vol. 2, pp. 1811-1816.
[171] J. Reinert and S. Schroder, “Power-factor correction for switched reluctance drives,” IEEE Trans. Ind. Electron., vol. 49, no. 1 pp. 54-57, 2002.
[172] R. Krishnan and S. Lee, “Effect of power factor correction circuit on switched reluctance motor drives for appliances,” in Proc. IEEE APEC, 1994, vol. 1, pp. 83-89.
[173] L. Helle, G. K. Andersen, F. Blaabjerg, and P. O. Rasmussen, "An integrated single-phase power-factor-controlled switched reluctance motor drive," in Proc. PCIM, 1999, pp. 137-142.
[174] D. H. Lee, Z. G. Lee, J. Liang, and J. W. Ahn, “Single-phase SRM drive with torque ripple reduction and power factor correction,” IEEE Trans. Ind. Appl., vol. 43, no. 6, pp. 1578-1587, 2007.
K. Digital Control
[175] F. Nekoogar and G. Moriarty, Digital Control Using Digital Signal Processing, Prentice Hall PTR, New Jersey, 1999.
[176] G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic System, 4th ed. Prentice Hall Inc., 2002.
[177] “Single-chip, DSP-based high performance motor controller ADMC401,” Analog Devices Inc., USA, 2000.
[178] “ADSP-2100 family user’s manual,” Analog Devices Inc., 1995.
L. Others
[179] T. G. Habetler and D. M. Divan, “Acoustic noise reduction in sinusoidal PWM drives using a randomly modulated carrier,” IEEE Trans. Power Electron., vol. 6, no. 3, pp. 356-363, 1991.
[180] C. M. Liaw and Y. M. Lin, “Random slope PWM inverter using system existing background noise: analysis, design and implementation,” IEE Proc. Elect. Power Applicat., vol. 147, no. 1, pp. 45-54, 2000.
[181] B. J. Kang and C. M. Liaw, “Random hysteresis PWM inverter with robust spectrum shaping,” IEEE Trans. Aerosp. Electron. Syst., vol. 37, no. 2, pp. 619-629, 2001.
[182] C. Mademlis and I. Kiosderidis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[183] C. M. Liaw, Y. M. Lin, C. H. Wu and K. I. Hwu, “Analysis, design, and implementation of a random frequency PWM inverter,” IEEE Trans. Power Electron., vol. 15, no. 5, pp. 843-854, 2000.
[184] C. M. Liaw, “System parameter estimation from sampled data,” Control and Dynamic Systems, vol. 63, pp. 161-195, 1994.
[185] H. C. Chen, S. H. Li and C. M. Liaw, “Switch-mode rectifier with digital robust ripple compensation and current waveform controls,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 560-566, 2004.
[186] C. M. Liaw and S. J. Chiang, “Robust control of multimodule current-mode controlled converters,” IEEE Trans. Power Electron., vol. 8, no. 4, pp. 455-465, Oct. 1993.
[187] J. Y. Chai, Y. W. Lin and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” IEE Proc. Elect. Power Applicat., vol. 153, no. 3, pp. 348-360, May 2006.
[188] J. Y. Chai, Y. H. Ho, Y. C. Chang and C. M. Liaw, “On acoustic noise reduction control using random switching technique for switch-mode rectifiers in PMSM drive,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1295-1309, March 2008.
[189] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front-end,” IEEE Trans. Energy Convers., to appear.
[190] J. Y. Chai and C. M. Liaw, “Robust control of switch-mode rectifier considering nonlinear behavior,” IET Proc. Elect. Power Applicat., vol. 1, no. 3, pp. 316-328, May 2007.
[191] S. H. Li and C. M. Liaw, “Paralleled DSP-based soft switching-mode rectifiers with robust voltage regulation control,” IEEE Trans. Power Electron., vol. 19, no. 4, pp. 937-946, 2004.