簡易檢索 / 詳目顯示

研究生: 黃瑞彬
Jui-Pin Huang
論文名稱: 無血清組成物於關節軟骨組織工程效應之探討
Study of the Effect of Serum-free Componets on Articular Cartilage Tissue Engineering
指導教授: 朱一民
I-Ming Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 93
中文關鍵詞: 軟骨組織工程軟骨細胞人類臍帶血間葉幹細胞膠原蛋白二型支架生長因子低分子量硫酸軟骨素C型無血清培養基實驗設計法即時定量聚合酶連鎖反應
外文關鍵詞: cartilage tissue engineering, chondrocyte, collagen type II scaffold, quantitative polymerase chain reaction, experimental design, growth factors, low-molecular weight chondroitin sulphate type C, serum-free medium
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討提供適當的無血清組成物,以利提升工程軟骨在臨床的應用性。於此,我們以多孔洞性三維膠原蛋白二型支架為基礎,專注在生長因子以及硫酸軟骨素這兩類無血清成份的使用。首先,利用即時定量聚合酶連鎖反應(qPCR)分析方法,於無血清基礎下將7種常用的生長因子,使用二水準部份因子實驗設計法以及陡升步伐實驗設計法,發展一組最加強軟骨細胞重要的特徵基因,collagen II,表現量的組合,乃是含五種生長因子濃度分別為EGF 8.31 ng/ml, TGF-β1 20.00 ng/ml, BMP-2 28.85 ng/ml, PDGF-bb 8.11 ng/ml, VEGF 12.69 ng/ml的無血清培養基;我們更從生化合成分析、組織切片染色觀察,發現均優越於使用含胎牛血清培養基培養後的細胞,證實有利於提升工程軟骨品質。此外運用於誘導軟骨走向後的人類臍帶血間葉幹細胞(hUMSC),發現亦能維持正常軟骨細胞特徵。研究另一部份,我們純化低分子量硫酸軟骨素C 型(LMWCSC)並以50 ug/ml的濃度添加於無血清培養基中,透過qPCR分析結果發現實驗組除了能夠加速提升軟骨特徵基因,亦能抑制分解基因的表現,推測LMWCSC對於提升工程軟骨修復的時程具有潛力,有利於軟骨組織醫學上醫療的開發。因此,搭配生長因子組合或LMWCSC的無血清培養基對於軟骨組織工程的發展將具有應用性。


    This study aimed on the development of serum-free conditions for clinical application of articular cartilage tissue engineering. Based on genipin-crosslinked collagen type II (COL II) scaffold and quantitative polymerase chain reaction (qPCR) analysis, 7 kinds of growth factors (GFs) and low-molecular weight chondroitin sulphate type C (LMWCSC) were chosen for the investigation. First, adapted from 2-level fractional factorial design and steepest ascent method, we selected a set of GFs and made a designed serum-free medium (dSFM) formulation which contained EGF 8.31 ng/ml, TGF-β1 20.00 ng/ml, BMP-2 28.85 ng/ml, PDGF-bb 8.11ng/ml, and VEGF 12.69 ng/ml. This dSFM could highly upregulate gene expression level of COL II, the unique marker of normal chondrocyte. From other parameter such as biochemical assay and histocytochemistry observation we also confirmed the better quality of engineered cartilage as compared to serum-containing group. In addition, we found this dSFM could maintain the induced human umbilical cord blood-derived mesenchymal stem cell (hUMSC) based on gene expression and biosynthetic rate. Next, we investigate the effect of LMWCSC on chondrocyte. We prepared it and found this small molecule could help chondrocyte to redifferentiate more rapidly. Meanwhile, several degradative genes were inhibited by LMWCSC. These data indicate that supplement with LMWCSC into medium are potent for promoting excreting ECM of normal cartilage as well as protecting from degradative damage, thus further development is promising. In summary, the choice of serum-free components into medium formulation could help cells develop normally and clinical application of cartilage tissue engineering.

    摘要 I Abstract II 謝誌 III 目錄 V 圖目錄 VII 表目錄 VIII 縮寫表 IX 第一章 範圍與研究目的 1 第二章 文獻回顧 3 2.1關節軟骨 3 2.1.1軟骨細胞 5 2.1.2細胞外基質 7 2.2關節軟骨疾病 9 2.3關節軟骨疾病治療方式 11 2.4組織工程 16 2.5無血清培養基 22 2.5.1實驗設計法 22 2.5.1.1部份因子實驗設計法 23 2.5.1.2參數優化 24 2.6 硫酸軟骨素於軟骨組織之功能 24 2.6.1硫酸軟骨素的分佈與生理功能 25 2.6.2硫酸軟骨素在退化性關節炎治療上的應用 27 第三章實驗材料與方法 29 3.1常用實驗藥品 29 3.2建構支架 29 3.2.1純化膠原蛋白二型 29 3.2.2建構3D支架 30 3.2.3交聯支架及滅菌處理 30 3.2.4支架交聯程度 31 3.2.5支架吸水率 32 3.2.6 支架熱性質分析 32 3.3無血清培養基實驗設計與分析法 33 3.3.1部份因子實驗設計法 33 3.3.2陡升實驗設計法 35 3.4純化不同分子量硫酸軟骨素 36 3.4.1酵素裂解 36 3.4.2分離不同分子量硫酸軟骨素 37 3.4.3探討不同分子量硫酸軟骨素對軟骨細胞的影響 38 3.5培養人類軟骨細胞及人類臍帶血間葉幹細胞 38 3.5.1種植細胞於支架 39 3.6生物性質分析 40 3.6.1 sGAGs分析 40 3.6.2 DNA分析 41 3.6.3 RNA萃取與定量 41 3.6.4 RNA反轉錄cDNA 42 3.6.5 PCR反應 42 3.6.6即時定量PCR(Quantitative Real-Time PCR, qPCR) 42 3.6.7組織切片染色 43 第四章 結果 51 4.1膠原蛋白二型支架之物化性質 51 4.1.1膠原蛋白二型純化結果 51 4.1.2支架交聯度分析 51 4.1.3支架熱性質分析 52 4.1.4吸水率 53 4.2無血清培養基設計 56 4.2.1部分因子實驗設計 56 4.2.2利用陡升實驗設計找尋最適化無血清培養基配方 57 4.3不同分子量軟骨硫素效應 67 4.3.1分離不同分子量硫酸軟骨素 67 4.3.2高低分子量硫酸軟骨素效應 68 第五章 討論 76 5.1 Genipin-crosslinked collagen II scaffold評估 76 5.2無血清培養基設計 77 5.3硫酸軟骨素效應 80 第六章 結論與未來展望 84 第七章 參考文獻 88

    第七章 參考文獻
    1. Robbins JR, Thomas B, Tan L, et al. Immortalized human adult articular chondrocytes maintain cartilage-specific phenotype and responses to interleukin-1beta. Arthritis Rheum. Oct 2000;43(10):2189-2201.
    2. Temenoff JS, Mikos AG. Review: tissue engineering for regeneration of articular cartilage. Biomaterials. Mar 2000;21(5):431-440.
    3. Reboul P, Pelletier JP, Tardif G, et al. Hepatocyte growth factor induction of collagenase 3 production in human osteoarthritic cartilage: involvement of the stress-activated protein kinase/c-Jun N-terminal kinase pathway and a sensitive p38 mitogen-activated protein kinase inhibitor cascade. Arthritis Rheum. Jan 2001;44(1):73-84.
    4. Archer CW, Francis-West P. The chondrocyte. Int J Biochem Cell Biol. Apr 2003;35(4):401-404.
    5. CORR. 2001:391
    6. Buckwalter J. Articular cartilage: tissue design and chondrocyte}matrix interactions. AAOS Inst Course Lect. 1998;47:477-486.
    7. DeLise AM, Fischer L, Tuan RS. Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage. Sep 2000;8(5):309-334.
    8. Lin Z, Willers C, Xu J, Zheng MH. The chondrocyte: biology and clinical application. Tissue Eng. Jul 2006;12(7):1971-1984.
    9. Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect. 1998;47:487-504.
    10. 朱家瑜. 人體組織學. 2000.
    11. Liu G, Kawaguchi H, Ogasawara T, et al. Optimal combination of soluble factors for tissue engineering of permanent cartilage from cultured human chondrocytes. J Biol Chem. Jul 13 2007;282(28):20407-20415.
    12. Doege KJ, Sasaki M, Kimura T, Yamada Y. Complete coding sequence and deduced primary structure of the human cartilage large aggregating proteoglycan, aggrecan. Human-specific repeats, and additional alternatively spliced forms. J Biol Chem. Jan 15 1991;266(2):894-902.
    13. Hedbom E, Antonsson P, Hjerpe A, et al. Cartilage matrix proteins. An acidic oligomeric protein (COMP) detected only in cartilage. J Biol Chem. Mar 25 1992;267(9):6132-6136.
    14. DiCesare P, Hauser N, Lehman D, Pasumarti S, Paulsson M. Cartilage oligomeric matrix protein (COMP) is an abundant component of tendon. FEBS Lett. Nov 7 1994;354(2):237-240.
    15. Briggs MD, Hoffman SM, King LM, et al. Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene. Nat Genet. Jul 1995;10(3):330-336.
    16. Briggs MD, Mortier GR, Cole WG, et al. Diverse mutations in the gene for cartilage oligomeric matrix protein in the pseudoachondroplasia-multiple epiphyseal dysplasia disease spectrum. Am J Hum Genet. Feb 1998;62(2):311-319.
    17. Hunter W. Of the structure and disease of articulating cartilages. 1743. Clin Orthop Relat Res. Aug 1995(317):3-6.
    18. Mankin HJ. The response of articular cartilage to mechanical injury. J Bone Joint Surg Am. Mar 1982;64(3):460-466.
    19. Shah MR, Kaplan KM, Meislin RJ, Bosco JA, 3rd. Articular cartilage restoration of the knee. Bull NYU Hosp Jt Dis. 2007;65(1):51-60.
    20. Mazzetti I, Magagnoli G, Paoletti S, et al. A role for chemokines in the induction of chondrocyte phenotype modulation. Arthritis Rheum. Jan 2004;50(1):112-122.
    21. Smalley WE, Ray WA, Daugherty JR, Griffin MR. Nonsteroidal anti-inflammatory drugs and the incidence of hospitalizations for peptic ulcer disease in elderly persons. Am J Epidemiol. Mar 15 1995;141(6):539-545.
    22. Tamblyn R, Berkson L, Dauphinee WD, et al. Unnecessary prescribing of NSAIDs and the management of NSAID-related gastropathy in medical practice. Ann Intern Med. Sep 15 1997;127(6):429-438.
    23. Davies NM, Jamali F. COX-2 selective inhibitors cardiac toxicity: getting to the heart of the matter. J Pharm Pharm Sci. Oct 29 2004;7(3):332-336.
    24. Gajraj NM, Joshi GP. Role of cyclooxygenase-2 inhibitors in postoperative pain management. Anesthesiol Clin North America. Mar 2005;23(1):49-72.
    25. Magnusson P. Technique of debridement of the knee joint for arthritis. Surg Clin North Am. 1946;26:226-249.
    26. Hubbard M. Articular debridement versus washout for degeneration of the medial femoral condyle. A five-year study. J Bone Joint Surg Br. . 1996;78:217-219.
    27. pridie K. A method of resurfacing knee joints. J Bone Joint Surg Br. 1959;41:618-619.
    28. Johnson L. Arthroscopic abrasion arthroplasty historical and pathologic perspective: Present status. Arthroscopy. 1986;2:54-69.
    29. Steadman JR, Rodkey WG, Briggs KK. Microfracture to treat full-thickness chondral defects: surgical technique, rehabilitation, and outcomes. J Knee Surg. Summer 2002;15(3):170-176.
    30. Bentley G, Minas T. Treating joint damage in young people. BMJ. Jun 10 2000;320(7249):1585-1588.
    31. Ghazavi MT, Pritzker KP, Davis AM, Gross AE. Fresh osteochondral allografts for post-traumatic osteochondral defects of the knee. J Bone Joint Surg Br. Nov 1997;79(6):1008-1013.
    32. Cross A. A fresh osteochondral allograft alternative. journal of arthroplasty. 2002;17:50-53.
    33. Outerbridge HK, Outerbridge AR, Outerbridge RE. The use of a lateral patellar autologous graft for the repair of a large osteochondral defect in the knee. J Bone Joint Surg Am. Jan 1995;77(1):65-72.
    34. Horas U, Pelinkovic D, Herr G, Aigner T, Schnettler R. Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial. J Bone Joint Surg Am. Feb 2003;85-A(2):185-192.
    35. Hangody L, Rathonyi GK, Duska Z, Vasarhelyi G, Fules P, Modis L. Autologous osteochondral mosaicplasty. Surgical technique. J Bone Joint Surg Am. Mar 2004;86-A Suppl 1:65-72.
    36. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. Oct 6 1994;331(14):889-895.
    37. Peterson L, Brittberg M, Kiviranta I, Akerlund EL, Lindahl A. Autologous chondrocyte transplantation. Biomechanics and long-term durability. Am J Sports Med. Jan-Feb 2002;30(1):2-12.
    38. Cancedda R, Dozin B, Giannoni P, Quarto R. Tissue engineering and cell therapy of cartilage and bone. Matrix Biol. Mar 2003;22(1):81-91.
    39. Malpeli M, Randazzo N, Cancedda R, Dozin B. Serum-free growth medium sustains commitment of human articular chondrocyte through maintenance of Sox9 expression. Tissue Eng. Jan-Feb 2004;10(1-2):145-155.
    40. Takahashi T, Ogasawara T, Kishimoto J, et al. Synergistic effects of FGF-2 with insulin or IGF-I on the proliferation of human auricular chondrocytes. Cell Transplant. 2005;14(9):683-693.
    41. NEREM RM, SAMBANIS A. Tissue Engineering: From Biology to Biological Substitutes. TISSUE ENGINEERING. 1995;1(1):3-13.
    42. National Science Foundation Workshop on Tissue Engineering. Lake Tahoe, CA. 1988.
    43. Langer R, Vacanti JP. Tissue engineering. Science. May 14 1993;260(5110):920-926.
    44. 宋信文, 梁晃千. 建造人類的身體工房 組織工程. 科學發展. 2003;362:6-11.
    45. 李宣書. 淺談組織工程. 物理雙月刊. 2001;24(3):430-435.
    46. Heng BC, Cao T, Lee EH. Directing stem cell differentiation into the chondrogenic lineage in vitro. Stem Cells. 2004;22(7):1152-1167.
    47. 楊明達, 馮台夫. 補充葡萄糖胺素與軟骨硫素對骨關節炎的影響. 大專體育. 2004;75:195-199.
    48. Shuler ML, Kargi F. Bioprocess Engineering. 2002:393-395.
    49. 洪穎哲. 最適化實驗設計法. 最適化實驗設計法課程. 2003:5,62-64.
    50. 姚少凌. 造血幹細胞體外增殖培養技術與應用. 國立清華大學化學工程學系博士論文. 2003.
    51. Raman R, Sasisekharan V, Sasisekharan R. Structural insights into biological roles of protein-glycosaminoglycan interactions. Chem Biol. Mar 2005;12(3):267-277.
    52. Cordoba F, Nimni ME. Chondroitin sulfate and other sulfate containing chondroprotective agents may exhibit their effects by overcoming a deficiency of sulfur amino acids. Osteoarthritis Cartilage. Mar 2003;11(3):228-230.
    53. Lippiello L. Glucosamine and chondroitin sulfate: biological response modifiers of chondrocytes under simulated conditions of joint stress. Osteoarthritis Cartilage. May 2003;11(5):335-342.
    54. Palmieri L, Conte A, Giovannini L, Lualdi P, Ronca G. Metabolic fate of exogenous chondroitin sulfate in the experimental animal. Arzneimittelforschung. Mar 1990;40(3):319-323.
    55. Conte A, Volpi N, Palmieri L, Bahous I, Ronca G. Biochemical and pharmacokinetic aspects of oral treatment with chondroitin sulfate. Arzneimittelforschung. Aug 1995;45(8):918-925.
    56. Bassleer C, Henrotin Y, Franchimont P. In-vitro evaluation of drugs proposed as chondroprotective agents. Int J Tissue React. 1992;14(5):231-241.
    57. Karzel K, Lee KJ. [Effect of hexosamine derivatives on mesenchymal metabolic processes of in vitro cultured fetal bone explants]. Z Rheumatol. Sep-Oct 1982;41(5):212-218.
    58. Pieper JS, van der Kraan PM, Hafmans T, et al. Crosslinked type II collagen matrices: preparation, characterization, and potential for cartilage engineering. Biomaterials. Aug 2002;23(15):3183-3192.
    59. Ko C-s, Wu C-H, Huang H-H, Chu I-M. Genipin cross-linking of type II collagen-chondroitin sulphate-hyaluronan scaffold for articular cartilage therapy Journal of Medical and Biological Engineering 2007;27(1):7-14.
    60. 吳俊賢. Developmet of serum-free medium for human chondrocyte. 國立清華大學化學工程學系碩士論文. 2006:4-11,18,27-32,35-39.
    61. Pietrucha K. Changes in denaturation and rheological properties of collagen-hyaluronic acid scaffolds as a result of temperature dependencies. Int J Biol Macromol. Sep 28 2005;36(5):299-304.
    62. Yamaoka H, Asato H, Ogasawara T, et al. Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials. J Biomed Mater Res A. Jul 2006;78(1):1-11.
    63. Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng. Apr 20 2006;93(6):1152-1163.
    64. Sung HW, Chen CN, Huang RN, Hsu JC, Chang WH. In vitro surface characterization of a biological patch fixed with a naturally occurring crosslinking agent. Biomaterials. Jul 2000;21(13):1353-1362.
    65. Mwale F, Stachura D, Roughley P, Antoniou J. Limitations of using aggrecan and type X collagen as markers of chondrogenesis in mesenchymal stem cell differentiation. J Orthop Res. Aug 2006;24(8):1791-1798.
    66. Nakamura K, Shirai T, Morishita S, Uchida S, Saeki-Miura K, Makishima F. p38 mitogen-activated protein kinase functionally contributes to chondrogenesis induced by growth/differentiation factor-5 in ATDC5 cells. Exp Cell Res. Aug 1 1999;250(2):351-363.
    67. Mucsi I, Skorecki KL, Goldberg HJ. Extracellular signal-regulated kinase and the small GTP-binding protein, Rac, contribute to the effects of transforming growth factor-beta1 on gene expression. J Biol Chem. Jul 12 1996;271(28):16567-16572.
    68. Hartsough MT, Mulder KM. Transforming growth factor-beta signaling in epithelial cells. Pharmacol Ther. 1997;75(1):21-41.
    69. Blunk T, Sieminski AL, Gooch KJ, et al. Differential effects of growth factors on tissue-engineered cartilage. Tissue Eng. Feb 2002;8(1):73-84.
    70. Ahmed N, Dreier R, Gopferich A, Grifka J, Grassel S. Soluble signalling factors derived from differentiated cartilage tissue affect chondrogenic differentiation of rat adult marrow stromal cells. Cell Physiol Biochem. 2007;20(5):665-678.
    71. R.S. Ti˘gli MGuudg, , . Evaluation of RGD- or EGF-immobilized chitosan scaffolds for chondrogenic activity. Int. J. Biol. Macromol. 2008.
    72. Horton WE, Jr., Higginbotham JD, Chandrasekhar S. Transforming growth factor-beta and fibroblast growth factor act synergistically to inhibit collagen II synthesis through a mechanism involving regulatory DNA sequences. J Cell Physiol. Oct 1989;141(1):8-15.
    73. Wolf F, Haug M, Farhadi J, Candrian C, Martin I, Barbero A. A low percentage of autologous serum can replace bovine serum to engineer human nasal cartilage. Eur Cell Mater. 2008;15:1-10.
    74. Tanaka, Y. Growth factor contents of autologous human sera prepared by different production methods and their biological effects on chondrocytes. Cell Biol Int. 2008.
    75. Das A, Jr., Hammad TA. Efficacy of a combination of FCHG49 glucosamine hydrochloride, TRH122 low molecular weight sodium chondroitin sulfate and manganese ascorbate in the management of knee osteoarthritis. Osteoarthritis Cartilage. Sep 2000;8(5):343-350.
    76. Bayliss MT, Davidson C, Woodhouse SM, Osborne DJ. Chondroitin sulphation in human joint tissues varies with age, zone and topography. Acta Orthop Scand Suppl. Oct 1995;266:22-25.
    77. Hardingham TE, Fosang AJ. Proteoglycans: many forms and many functions. FASEB J. Feb 1 1992;6(3):861-870.
    78. Moretti M, Wendt D, Dickinson SC, et al. Effects of in vitro preculture on in vivo development of human engineered cartilage in an ectopic model. Tissue Eng. Sep-Oct 2005;11(9-10):1421-1428.
    79. Ohno S, Im HJ, Knudson CB, Knudson W. Hyaluronan oligosaccharide-induced activation of transcription factors in bovine articular chondrocytes. Arthritis Rheum. Mar 2005;52(3):800-809.
    80. Ohno S, Im HJ, Knudson CB, Knudson W. Hyaluronan oligosaccharides induce matrix metalloproteinase 13 via transcriptional activation of NFkappaB and p38 MAP kinase in articular chondrocytes. J Biol Chem. Jun 30 2006;281(26):17952-17960.
    81. McMahon LA, Prendergast PJ, Campbell VA. A comparison of the involvement of p38, ERK1/2 and PI3K in growth factor-induced chondrogenic differentiation of mesenchymal stem cells. Biochem Biophys Res Commun. Apr 18 2008;368(4):990-995.
    82. Nakatani S, Mano H, Im R, Shimizu J, Wada M. Glucosamine regulates differentiation of a chondrogenic cell line, ATDC5. Biol Pharm Bull. Mar 2007;30(3):433-438.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE