簡易檢索 / 詳目顯示

研究生: 藍子凱
Lan, Tzu-Kai
論文名稱: 差頻光源之研究
Study on Difference Frequency Generation Light Source
指導教授: 施宙聰
Shy, Jow-Tsong
口試委員: 彭錦龍
周哲仲
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 62
中文關鍵詞: 差頻精密光譜絕對頻率一氧化二氮光頻梳
外文關鍵詞: difference frequency, precision Spectroscopy, absolute frequency, nitrous oxide, optical frequency comb
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們利用鈦藍寶石雷射(Ti:Sapphire laser)與Nd:YAG雷射泵浦的中紅外PPLN (Periodically poled lithium niobate)差頻光源,測量N2O基頻帶(0001←0000, fundamental band)中R(10)譜線的飽和光譜,並以飛秒光頻梳(femtosecond optical frequency comb)測量其絕對頻率。
    我們探討兩種穩住差頻光源頻率的方法,並做比較。方法一:Ti:S scan為將Nd:YAG雷射的倍頻光頻率穩在碘分子127I2 R(56) 32-0, a10標準譜線上,並將此頻率視為已知;藉由改變鈦藍寶石雷射頻率掃描差頻光源頻率,可以得到待測譜線的飽和吸收訊號,將此訊號當作誤差訊號送至鈦藍寶石雷射,使差頻光源頻率穩在譜線中心。而方法二:YAG scan為將鈦藍寶石雷射頻率穩至一熱絕緣良好的Fabry-Perot共振腔;相對於Ti:S scan,我們藉由改變Nd:YAG雷射頻率掃描差頻光源頻率。另外將誤差訊號送至Nd:YAG雷射,使差頻光源頻率穩在譜線中心。譜線的絕對頻率即兩台穩頻雷射的差值,可利用飛秒光頻梳系統決定,Ti:S scan假設Nd:YAG雷射頻率已知,因此僅測量鈦藍寶石雷射頻率;YAG scan,則需同時測量鈦藍寶石雷射與Nd:YAG雷射的頻率。
    然而Ti:S scan中Nd:YAG雷射頻率實際上並非定值,在不同的實驗條件下會得到不同的頻率。經過實際測量與修正,兩種方法測量R(10)譜線的頻率僅差異約1 kHz。因為Nd:YAG雷射共振腔結構為monolithic non-planar ring oscillator,頻率穩定度較鈦藍寶石雷射佳,因此利用YAG scan方法所得到的譜線相較於Ti:S scan中有較佳的頻譜解析度。此外,在本實驗中,YAG scan的回授系統仍需加以改善以增進測量的精確度。


    In this thesis, we observe the saturation spectrum of N2O 0001←0000 fundamental band R(10) transition by a CW mid-infrared MgO:PPLN-based difference frequency generation (DFG) source pumped by a Ti:Sapphire laser and a Nd:YAG laser. The absolute frequency of R(10) transition is also determined by the femtosecond optical frequency comb (OFC).
    We present two methods to stabilize the frequency of DFG source. Method 1: Ti:S scan in which we stabilize the frequency of Nd:YAG laser on the a10 component, R(56) 32-0 transition iodine molecule 127I2, and the frequency of DFG source is scanned and locked by tuning the frequency of Ti:Sapphire laser. Method 2: YAG scan in which we stabilize the frequency of Ti: Sapphire laser using a thermally isolated Fabry-Perot cavity, and the frequency of the DFG source is scanned and locked by tuning the frequency of the Nd:YAG laser.
    The absolute frequency of N2O transition is equal to the difference of two laser frequencies. In Ti:S scan method, we assume that the frequency of Nd:YAG laser is a known value, so we only measure the frequency of Ti:Sapphire laser by the OFC. And in YAG scan method, we have to measure the frequencies of Ti:Sapphire laser and Nd:YAG laser simultaneously. However, in Ti:S scan, the frequency of Nd:YAG laser isn’t a fixed value actually and it is different for different frequency locking condition.
    After measuring the Nd:YAG laser, the frequency difference of the absolute frequency measurements using Ti:S scan and YAG scan is approximate 1 kHz. Due to the monolithic non-planar ring oscillator structure of Nd:YAG laser, its frequency stability is better than Ti:Sapphire laser. Our system has better resolution by adopting the YAG scan method. In addition, we have to improve the feedback system to increase the accuracy in measuring the absolute frequency.

    摘要 i Abstract i 致謝 iv 目錄 v 圖目錄 vii 表目錄 ix 第一章 緒論 - 1 - 1-1 研究動機 - 1 - 1-2 章節分配 - 4 - 第二章 實驗原理 - 5 - 2-1 差頻光源 - 5 - 2.1.1 光與物質間非線性光學效應 - 5 - 2.1.2 三波混合的第二階非線性效應 - 7 - 2.1.3 相位匹配與準相位匹配 - 8 - 2-2 雷射穩頻 - 13 - 2-2.1 Fabry-Perot共振腔 - 14 - 2-2.2 頻率調制 - 16 - 2-2.3 邊緣穩頻法 - 20 - 2-2.4 Pound-Drever-Hall雷射穩頻法 - 22 - 2-3 飛秒光頻梳 - 26 - 第三章 實驗系統與架構 - 28 - 3-1 差頻光源 - 28 - 3-2 飽和吸收光譜測量系統 - 33 - 3-3 飛秒光頻梳系統 - 34 - 第四章 實驗結果與討論 - 36 - 4-1 碘穩頻Nd:YAG雷射之研究 - 36 - 4-2 鈦藍寶石穩頻至Fabry-Perot共振腔之研究 - 41 - 4-3 N2O R(10)之頻率量測 - 45 - 第五章 結論與未來工作 - 56 - 5-1 結論 - 56 - 5-2 未來工作 - 57 - 參考文獻 - 58 - 附錄– PI Loop電路圖 - 62 -

    [1] W. R. C. Rowley and D. C. Wilson, “Wave-length stabilization of an optical maser,” Nature 200, 745-747 (1963).
    [2] I. P. Kaminow, “Balanced optical discriminator,” Appl. Opt. 3, 507-510 (1964).
    [3] W. E. Lamb, “Theory of an optical maser,” Phys. Rev. 134, A1429-A1450 (1964).
    [4] K. D. Mielenz, K. F. Nefflen, W. R. C. Rowley, D. C. Wilson, and E. Engelhard, “Reproducibility of helium-neon laser wavelengths at 633 nm,” Appl. Opt. 7, 289-293 (1968).
    [5] R. L. Barger and J. L. Hall, “Pressure shift and broadening of methane line at 3.39 μm studied by laser-saturated molecular absorption,” Phys. Rev. Lett. 22, 4-8 (1969).
    [6] G. R. Hanes and K. M. Baird, “I2 controlled He-Ne laser at 633 nm: preliminary wavelength,” Metrologia 5, 32-33 (1969).
    [7] G. R. Hanes and C. E. Dahlstrom, “Iodine hyperfine structure observed in saturated absorption at 633 nm,” Appl. Phys. Lett. 14, 362-364 (1969).
    [8] R. W. Boyd, Nonlinear Optics, 3rd ed. Rochester, New York: Academic Press, 2008, ch.2.
    [9] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918-1929 (1962).
    [10] W. Demtroder, Laser Spectroscopy: Volume 1: Basic Principles, 4th Ed. Kaisrslautern: Springer, 2008, ch5.
    [11] W. Demtroder, Laser Spectroscopy: Volume 2: Experimental Techniques, 4th Ed. Kaisrslautern: Springer, 2008, ch6.
    [12] M. Maric and A. Luiten, “Power-insensitive side locking for laser frequency stabilization,” Opt. Lett. 30, 1153-1155 (2005).
    [13] E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79-87 (2001).
    [14] Th. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233-237 (2002).
    [15] S. T. Cundiff, “Phase stabilization of ultrashort optical pulses,” J. Phys. D: Appl. Phys. 35, R43-R59 (2002).
    [16] Operator’s Manual Model MBR-110 Single Frequency Ti:Sapphire Laser, Coherent, Santa Clara, CA, 2002.
    [17] CIPM, Practical realization of the definition of the meter [online].
    http://www.bipm.org/en/home/mep.html
    [18] 李明翰, “飛秒光頻梳的改進”, 國立清華大學光電工程研究所碩士論文(2008)。
    [19] T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65-67 (1985).
    [20] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. Canada: Wiley-Interscience, 2007, ch.21.
    [21] O. Svelto, Principles of Lasers, 4th ed. Kluwer New York and London : Plenum Press, 1998
    [22] 鄭王曜、施宙聰,“2005年諾貝爾物理獎得主--漢希(T.W. Hansch)與霍爾(J.L. Hall)”, 物理雙月刊廿八卷(2006年2月)。
    [23] 彭錦龍、安惠榮,“飛秒鎖模雷射在光頻計量的應用”,物理雙月刊廿三卷(2004年6月)。
    [24] 田駿宇,“穩頻雷射絕對頻率量測”,國立清華大學光電工程研究所碩士論文(2010)。
    [25] 蕭中芸,“HeH+離子飽和吸收光譜量測系統的建立”,國立清華大學光電工程研究所碩士論文(2010)。
    [26] 羅佩凌,“二氧化碳分子4.3 μm熱頻帶躍遷精密光譜”,國立清華大學物理學系碩士論文(2010)。
    [27] 胡君怡,“可攜式綠光 543 nm 一級長度標準”,國立東華大學應用物理研究所(2004)。
    [28] 廖俊杰,“二氧化碳分子在4.3 μm及2.7 μm之高精密光譜研究”,國立清華大學物理學系博士論文 (2008)。
    [29] 鍾杰興,“二氧化碳在4.3 μm基頻帶高旋轉量子數躍遷之絕對頻率測量”,國立清華大學物理學系碩士論文 (2008)。
    [30] 方惠梅,“碘分子穩頻雷射之研究”,國立交通大學光電工程系所博士論文 (2005)。
    [31] 朱振弦,“利用 Fabry-Perot 共振腔做穩頻雷射之研究”,逢甲大學光電物理研究所碩士論文 (2004)。
    [32] 楊舒評,“利用高精細共振腔增強吸收法研究弱分子吸收譜線”,逢甲大學光電學系碩士論文 (2009)。
    [33] D. Mazzotti, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi and P. D. Natale, “A comb-referenced difference-frequency spectrometer for cavity ring-down spectroscopy in the 4.5 μm region,” J. Opt. A: Pure Appl. Opt. 8, S490–S493 (2006).
    [34] K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba and F. L. Hong, “Absolute frequency measurement of sub-doppler molecular lines using a 3.4 μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phy. Rev. A80,03251 1-6 (2009).
    [35] J. Rutman and F. L. Walls, “Characterization of frequency stability in precision frequency sources,” Proceedings of the IEEE 79, 952-960 (1991).
    [36] G. Galzerano, M. Marano, S. Taccheo, and P. Laporta, “2.1-μm lasers frequency stabilized against CO2 lines:comparison between fringe-side and frequency-modulation locking methods,” Opt. Lett. 28, 248-250 (2003).
    [37] S. T. Dawkins, R. Chicireanu, M. Petersen, J. Millo, D. V. Magalhaes, C. Mandache, Y. L. Coq and S. Bize, “An ultra-stable referenced interrogation system in the deep ultraviolet for a mercury optical lattice clock,” Appl. Phys. B 99, 41-46 (2010).
    [38] T. W. Hanscha and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441-444 (1980).
    [39] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
    [40] R. V. Pound, "Electronic frequency stabilization of microwave oscillators," Rev. Sci. Instrum. 17, 490-505 (1946).
    [41] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
    [42] W. J. Ting, T. K. Lan and J. T. Shy, “Mid-IR mW-level CW Difference-Frequency Generation Source for High Precision Molecular Spectroscopy,” 2011中華民國物理學會年會 Poster。
    [43] B.G. Whitford, K.J. Siemsen, H.D. Riccius and G.R. Hanes, “Absolute frequency measurements of N2O laser transitions,” Opt. Commun. 14, 70-74 (1975).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE