簡易檢索 / 詳目顯示

研究生: 黃子桓
Huang, Zi Huan
論文名稱: 利用單一電漿奈米洞進行光學捕捉及拉曼分析
Optical Trapping and Raman Analysis using Single Plasmonic Nanoholes
指導教授: 黃哲勳
Huang, Jer Shing
口試委員: 張玉明
Chang, Yu Ming
黃承彬
Huang,Chen Bin
郭俊宏
Kuo, Chun Hong
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 75
中文關鍵詞: 表面電漿共振拉曼分析光學捕捉
外文關鍵詞: surface plasmon resonance, raman analysis, optical trapping
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在生物化學領域上,對於具有掌性分子之辨認、分離、轉換是極為重要的研究課題,一般來說通常會使用圓二色圖譜、螢光檢測圓二色圖譜或旋光拉曼來進行分析,但是由於旋光與掌性分子間尺寸的不匹配導致其響應非常微弱,所以如何增強旋光與掌性分子間的作用力是一個熱門的研究領域。

    在此研究中,我們結合理論計算及光學實驗探討電漿奈米結構的光學特性,利用電漿奈米結構提高光與分子間的作用並增益光學掌性。而近年來,電漿奈米結構亦常被使用在光學捕捉技術上,由於表面電漿共振具濃縮電場在近場、大幅提高電場梯度的特性,可以捕捉較傳統光學捕捉尺寸更小的粒子。所以我們希望使用電漿奈米結構達到近場增益同時結構扮演電漿光學鑷子角色來捕捉待測掌性分子進行旋光拉曼分析,使偵測靈敏度大幅提高,以達到超低濃度掌性分子分析。

    在實驗上,我們先做電漿奈米圓洞的分析,分為兩實驗同時進行。首先我們先將圓洞裡鋪滿拉曼分子,入射雷射光激發圓洞從圓洞並量測奈米圓洞的穿透光得到分子的拉曼光譜,接著利用模擬計算進一步證明拉曼訊號強度和近場增益及穿透增益的關係。另一實驗,使用奈米洞結構進行光學捕捉直徑為 20 nm 的聚苯乙烯奈米球,長時間穩定地將聚苯乙烯球捕捉在洞中且具有高度再現性。
    接著我們利用時域有限差分法模擬計算,找出具最強光學掌性增益的奈米橢圓結構尺寸,並計算在水溶液中對於聚苯乙烯球的光學捕捉力。

    未來,我們希望可以進一步做掌性分子在橢圓洞中的拉曼旋光分析,最後結合光學捕捉,將掌性分子利用化學修飾在聚苯乙烯球表面上,並用線性偏振光激發奈米橢圓結構,同時間產生圓偏振近場光及捕捉住聚苯乙烯球,在水溶液中進行掌性分子的拉曼旋光分析。


    Chiral molecules show slightly different absorbance of left- and right-handed circularly polarized light (CPL). Such circular dichroism (CD) effect can be used for the characterization of molecular chirality. Unfortunately, CD is usually very weak due
    to the mismatch between the pitch of CPL helix and the size of molecular chiral domain.

    Plasmonic nanostructures can concentrate optical fields at nanometer scale and provide stiff optical potential to enhance optical chirality and improve CD signals. Plasmonic elliptical nanoholes can create the concentrated chiral optical near field
    based on localized surface plasmonic resonance (LSPR). The optical near field generated in nanohole can also provide trapping force to isolate, immobilize and manipulate the target nanoparticles. By controlling the polarization of the incident light, the chirality of the optical near field can be easily switched. Since the optical near field in the hole is circularly polarized, the Raman scattering also reveal the chirality of the
    target due to the Raman optical activity (ROA).

    This work is divided into two parts. First, we design and fabricate plasmonic circular nanoholes which are pave with R6G molecules. By measuring the Raman scattering spectrum of R6G molecules in single nanohole, we can then obtain the information between Raman intensity, near field enhancement and transmission enhancement. In second part, we use single nanohole to trap 20 nm polystyrene sphere
    with high reproducibility in stable state.

    In the further, combine optical trapping with plasmonic elliptical nanoholes, we are able to obtain ROA analysis by linearly polarized light in solution.

    摘要............................................................................................ I ABSTRACT................................................................................ II 誌謝.......................................................................................... III 目錄.......................................................................................... IV 圖目錄..................................................................................... VII 第 1 章 原理 .............................................................................. 1 1.1 表面電漿子 .......................................................................... 1 1.1.1 電磁波的傳遞 .................................................................... 2 1.1.2 表面電漿共振 ................................................................... 4 1.2 圓二色性及光學掌性 ........................................................... 9 1.3 拉曼旋光 ...........................................................................15 1.3.1 拉曼旋光原理 ..................................................................15 1.4 光學鑷子 ...........................................................................20 1.4.1 傳統光學鑷子 ................................................................. 20 1.4.2 傳統光學鑷子限制 .......................................................... 23 1.4.3 電漿子光學鑷子 ............................................................. 24 1.5 電漿奈米結構 .................................................................... 25 1.5.1 線型天線 ........................................................................ 26 1.5.2 對稱十字型天線 .............................................................. 27 1.5.3 不對稱十字型天線 .......................................................... 29 1.5.4 圓洞及橢圓洞 ................................................................. 31 第 2 章 模擬計算 .................................................................... 33 2.1 時域有限差分法 ................................................................ 33 2.2 模擬設定 .......................................................................... 33 2.2.1 散射光譜 ....................................................................... 34 2.2.2 近場增益 ....................................................................... 35 2.2.3 光學掌性增益 ................................................................ 36 2.2.4 捕捉力 .......................................................................... 37 第 3 章 實驗架設與步驟 .......................................................... 39 3.1 樣品製備 .......................................................................... 39 3.1.1 單晶金片合成 ................................................................. 39 3.1.2 奈米洞結構 .................................................................... 42 3.1.3 流體容槽製作 ................................................................ 43 3.2 光學架設 .......................................................................... 46 3.2.1 暗場散射實驗 ................................................................. 47 3.2.2 拉曼旋光及光學捕捉實驗 ............................................... 48 第 4 章 實驗結果與討論 .......................................................... 51 4.1 暗場散射 .......................................................................... 51 4.2 圓洞拉曼分析 ................................................................... 53 4.3 橢圓洞光學掌性增益 ......................................................... 61 4.4 電漿光學捕捉 ................................................................... 64 4.5 口試問題回答 ................................................................... 68 第 5 章 結論與未來展望 .......................................................... 71 第 6 章 參考文獻 .................................................................... 72

    1. Zayats, A.V., I.I. Smolyaninov and A.A. Maradudin, "Nano-optics of surface plasmon polaritons," Physics Reports 408, 131-314 (2005)
    2. Pitarke, J.M., V.M. Silkin, E.V. Chulkov and P.M. Echenique, "Theory of surface plasmons and surface-plasmon polaritons," Rep. Prog. Phys. 70, 1-87 (2007)
    3. Willets, K.A. and R.P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267-297 (2007)
    4. Nie, S. and S.R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102-1106 (1997)
    5. Chen, C., N. Hayazawa and S. Kawata, "A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient," Nat Commun 5, 3312 (2014)
    6. Oulton, R.F., V.J. Sorger, D.A. Genov, D.F.P. Pile and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nature Photonics 2, 496-500 (2008)
    7. Dai, W.H., F.C. Lin, C.B. Huang and J.S. Huang, "Mode conversion in high-definition plasmonic optical nanocircuits," Nano Lett. 14, 3881-3886 (2014)
    8. Optical Second Harmonic Generation in Plasmonic Nanostructures: From Fundamental Principles to Advanced Applications
    9. Butet, J., P.-F. Brevet and O.J.F. Martin, "Optical Second Harmonic Generation in Plasmonic Nanostructures: From Fundamental Principles to Advanced Applications," ACS Nano 9, 10545-10562 (2015)
    10. Juan, M.L., M. Righini and R. Quidant, "Plasmon nano-optical tweezers," Nature Photonics 5, 349-356 (2011)
    11. Huang, J.-S. and Y.-T. Yang, "Origin and Future of Plasmonic Optical Tweezers," Nanomaterials 5, 1048-1065 (2015)
    12. Brzobohaty, O., M. Siler, J. Trojek, L. Chvatal, V. Karasek, A. Patak, et al., "Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers," Sci Rep 5, 8106 (2015)
    13. 邱國斌, 蔡定平, "金屬表面電漿簡介," 物理雙月刊
    28, 472-485 (2006)
    14. 吳民耀, 劉威志, "表面電漿子理論與模擬," 物理雙月刊
    28, 486-496 (2006)
    15. Zhang, J., L. Zhang and W. Xu, "Surface plasmon polaritons: physics and applications," J. Phys. D: Appl. Phys. 45, 113001 (2012)
    16. Deng, Y. and G. Liu, "Surface plasmons resonance detection based on the attenuated total reflection geometry," Procedia Engineering 7, 432-435 (2010)
    17. Berova, N. and Nakanishi, K., "Circular dichroism: principles and applications," John Wiley & Sons (2000)
    18. Inoue, Y. and Ramamurthy, V., "Chiral photochemistry," CRC Press (2004)
    19. Barron, L. D., "Molecular light scattering and optical activity," Cambridge University Press (2004)
    20. Craig, D.P. and T. Thirunamachandran, "New approaches to chiral discrimination in coupling between molecules," Theor. Chem. Acc. 102, 112-120 (1999)
    21. Lipkin, D.M., "Existence of a new conservation law in electromagnetic theory," J. Math. Phys. 5, 696-700 (1964)
    22. Tang, Y. and A.E. Cohen, "Optical chirality and its interaction with matter," Phys. Rev. Lett. 104, 163901 (2010)
    23. Tang, Y. and A.E. Cohen, "Enhanced Enantioselectivity in Excitation of Chiral Molecules by Superchiral Light," Science 332, 333-336 (2011)
    24. Hendry, E., T. Carpy, J. Johnston, M. Popland, R.V. Mikhaylovskiy, A.J. Lapthorn, et al., "Ultrasensitive detection and characterization of biomolecules using superchiral fields," Nat Nanotechnol 5, 783-787 (2010)
    25. He, Y., G.K. Larsen, W. Ingram and Y. Zhao, "Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers," Nano Lett. 14, 1976-1981 (2014)
    26. Kuzyk, A., R. Schreiber, H. Zhang, A.O. Govorov, T. Liedl and N. Liu, "Reconfigurable 3D plasmonic metamolecules," Nat Mater 13, 862-866 (2014)
    27. Schäferling, M., X. Yin, N. Engheta and H. Giessen, "Helical Plasmonic Nanostructures as Prototypical Chiral Near-Field Sources," ACS Photonics 1, 530-537 (2014)
    28. Schäferling, M., D. Dregely, M. Hentschel and H. Giessen, "Tailoring Enhanced Optical Chirality: Design Principles for Chiral Plasmonic Nanostructures," Physical Review X 2, (2012)
    29. Mastroianni, A.J., S.A. Claridge and A.P. Alivisatos, "Pyramidal and Chiral Groupings of Gold Nanocrystals Assembled Using DNA Scaffolds," J. Am. Chem. Soc. 131, 8455-8459 (2009)
    30. Schäferling, M., X. Yin and H. Giessen, "Formation of chiral fields in a symmetric environment," Opt. Express 20, 26326-26336 (2012)
    31. Barron, L.D. and A.D. Buckinham, "Rayleigh and Raman scattering from optically active molecules," Molecular Physics 20, 1111-1119 (1971)
    32. Barren, L.D., M.P. Bogaard and A.D. Buckingham, "Raman scattering of circularly polarized light by optically active molecules," J. Am. Chem. Soc. 95, 603-605 (1973)
    33. Blanch, E.W., L. Hecht and L.D. Barron, "Vibrational Raman optical activity of proteins, nucleic acids, and viruses," Methods 29, 196-209 (2003)
    34. Barren, L.D., L. Hecht, I.H. McColl and E.W. Blanch, "Raman optical activity comes of age," Molecular Physics 102, 731-744 (2004)
    35. Zhu, F., N.W. Isaacs, L. Hecht and L.D. Barron, "Raman optical activity: a tool for protein structure analysis," Structure 13, 1409-1419 (2005)
    36. Nafie, L.A., "Vibrational Optical Activity," Appl. Spectrosc. 50, 14A-26A (1996)
    37. Barron, L.D. and A.D. Buckingham, "Vibrational optical activity," Chem. Phys. Lett. 492, 199-213 (2010)
    38. Mutter, S.T., F. Zielinski, P.L. Popelier and E.W. Blanch, "Calculation of Raman optical activity spectra for vibrational analysis," Analyst 140, 2944-2956 (2015)
    39. Ashkin, A., "Acceleration and Trapping of Particles by Radiation Pressure," Phys. Rev. Lett. 24, 156-159 (1970)
    40. Ashkin, A., J.M. Dziedzic, J.E. Bjorkholm and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986)
    41. Radenovic, A., "Optical Trapping Handout," École Polytechnique Fédérale de Lausanne
    42. Neuman, K.C. and S.M. Block, "Optical trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004)
    43. Wright, W.H., G.J. Sonek and M.W. Berns, "Radiation trapping forces on microspheres with optical tweezers," Appl. Phys. Lett. 63, 715 (1993)
    44. Al Balushi, A.A., A. Kotnala, S. Wheaton, R.M. Gelfand, Y. Rajashekara and R. Gordon, "Label-free free-solution nanoaperture optical tweezers for single molecule protein studies," Analyst 140, 4760-4778 (2015)
    45. Biagioni, P., M. Savoini, J.-S. Huang, L. Duò, M. Finazzi and B. Hecht, "Near-field polarization shaping by a near-resonant plasmonic cross antenna," Physical Review B 80, (2009)
    46. Biagioni, P., J.S. Huang, L. Duo, M. Finazzi and B. Hecht, "Cross resonant optical antenna," Phys. Rev. Lett. 102, 256801 (2009)
    47. Juan, M.L., R. Gordon, Y. Pang, F. Eftekhari and R. Quidant, "Self-induced back-action optical trapping of dielectric nanoparticles," Nature Physics 5, 915-919 (2009)
    48. Huang, J.S., V. Callegari, P. Geisler, C. Bruning, J. Kern, J.C. Prangsma, et al., "Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry," Nat Commun 1, 150 (2010)
    49. Guo, Z., Y. Zhang, Y. DuanMu, L. Xu, S. Xie and N. Gu, "Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene
    glycol solution," Colloids and Surfaces A: Physicochemical and Engineering Aspects 278, 33-38 (2006)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE