研究生: |
陳昕遠 Chen, Hsin Yuan |
---|---|
論文名稱: |
退火過程中介層對於奈米雙晶銅薄膜之異常晶粒成長的影響 The Effect of Interlayer on Abnormal Grain Growth of Nanotwinned Copper Thin Film during Annealing Process |
指導教授: |
歐陽汎怡
Ouyang, Fan Yi |
口試委員: |
黃嘉宏
Huang, Jia Hong 周苡嘉 Chou, Yi Chia |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 95 |
中文關鍵詞: | 銅 、雙晶 、薄膜 、異常晶粒成長 |
外文關鍵詞: | copper, twin, thin film, abnormal grain growth |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了研究介層對奈米雙晶銅薄膜熱穩定性的影響,我們利用非平衡磁控濺鍍系統將兩種介層材料分別鍍在不同的矽基板上,接下來再將銅鍍在介層之上,而我們選用的介層材料分別為CrN和TiN。接著,我們將這兩批試片送入高溫爐之中,並分別進行退火30、60和120分鐘以了解介層對熱穩定性的影響。
藉由穿透式電子顯微鏡我們發現了在熱處理前的銅薄膜中含有非常多的雙晶,而這些雙晶都是平行基板生長的。退火之後,我們在使用CrN為介層的試片中發現了許多巨大的晶粒,而隨著退火時間的增加,這些晶粒也隨之長大。 晶粒大小從退火前的0.49μm變成退火120分鐘後的60μm。在退火過程中,這些巨大的晶粒會持續長大,甚至長到比膜厚還大。而這些晶粒經過各種儀器鑑定後,可以確定為(200)的晶粒,此外,我們同時也在這些巨大的晶粒中發現雙晶,和之前的雙晶不同,這些雙晶傾向傾斜於基板生長,並會從薄膜底部成長而且達到表面。而退火後,我們並沒有發現以TiN為介層的試片中發現微結構上有任何的改變。即便是退火兩小時後,晶粒大小和雙晶的成長方向都沒有發現到顯著的改變。我們推測造成這類結晶方向轉變得原因為表面能和應變能的競爭,若應變能為主宰之驅動力,則此時(200)晶粒較為穩定,且由於CrN經量測後發現是偏向(200)之生長方向,因此許多(200)的銅晶粒在其表面成核,造成了在退火時以CrN為介層的銅薄膜擁有較大的驅動力進行異常晶粒成長。而在性質的方面,我們發現若試片發生異常晶粒成長,其硬度、電阻、殘留應力皆會下降;若沒發生,則這些性質在退火後不會有明顯的改變。在此實驗中,以TiN為介層之銅薄膜展現出較好的熱穩定性,而以上結果也指出介層的種類的確會影響銅薄膜的熱穩定性。
Highly pure nanotwinned copper thin films which would be applied in semiconductor as interconnects were fabricated by using unbalanced magnetron sputtering (UBMS) system. In order to investigate the influence of different interlayers on microstructure and thermal stability of Cu film, CrN and TiN thin film was selected and respectively deposited onto a silicon wafer as an interlayer before coating Cu thin films. Then, the samples with different interlayers were subject to isothermally anneal at 250℃ in 5×10-6 torr for 30, 60 and 120 minutes, respectively, to study the thermal stability of Cu thin films.
After deposition, the Cu thin film with high density nanotwin structure was observed in both interlayer samples, and all twin boundaries was found to be parallel to the Si substrate. However, some abnormal large grains were found in the samples with CrN interlayer and their grain size increased from 0.49μm to 60μm after annealing at 250℃ for 120 minutes. These huge grains were (200) grains and some huge grains were found to grow until penetrate the thickness of Cu thin film when annealing time increases. Furthermore, the direction of twin boundary in these huge grains was observed to tend to be perpendicular to Si substrate. On the other hand, there was no significant microstructure change in the samples with TiN interlayer after annealing for 120 minutes; the grain sizes of nano-twinned Cu thin film still remain and the boundary of nano-twin Cu is still parallel to the Si substrate. We proposed that the texture evolution from {111} to {200} of Cu film was resulted from the competition between surface/interface minimization and strain energy minimization, and strain energy dominates in Cu thin film with CrN interlayer which cause the {200} grains become stable. The CrN interlayer was found with a {200}-preferred orientation, which may cause many {200} Cu seeds nucleate onto the interlayer. During annealing process, lots of {200} Cu seeds become the driving force of abnormal grain growth, and the {200} abnormal grains appear. Regarding to the properties of nanotwinned copper thin films, the residual stresses, electrical resistivity and hardness of Cu thin films decreased for the samples with CrN interlayer due to abnormal grain growth of Cu thin film, whereas these properties of Cu thin films with TiN interlayer didn’t change a lot after 120 minutes of annealing time. The above results suggest that the thermal stability of nano-twinned Cu thin film is strongly related to the interlayer and the samples with TiN interlayer exhibits more thermal stability than CrN interlayer.
[1] D.W.C. Jr, Materials science and engineering, An introduction, (2000).
[2] L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Ultrahigh strength and high electrical conductivity in copper, Science, 304 (2004) 422.
[3] V. Weihnacht, W. Brückner, Abnormal grain growth in {111} textured Cu thin films, Thin Solid Films, 418 (2002) 136-144.
[4] P. Sonnweber-Ribic, P.A. Gruber, G. Dehm, H.P. Strunk, E. Arzt, Kinetics and driving forces of abnormal grain growth in thin Cu films, Acta Materialia, 60 (2012) 2397-2406.
[5] X. Zhang, A. Misra, H. Wang, M. Nastasi, J.D. Embury, T.E. Mitchell, R.G. Hoagland, J.P. Hirth, Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films, Applied Physics Letters, 84 (2004) 1096-1098.
[6] A. Misra, X. Zhang, D. Hammon, R.G. Hoagland, Work hardening in rolled nanolayered metallic composites, Acta Materialia, 53 (2005) 221-226.
[7] X. Zhang, H. Wang, X.H. Chen, L. Lu, K. Lu, R.G. Hoagland, A. Misra, High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins, Applied Physics Letters, 88 (2006) 173116.
[8] O. Anderoglu, A. Misra, H. Wang, F. Ronning, M.F. Hundley, X. Zhang, Epitaxial nanotwinned Cu films with high strength and high conductivity, Applied Physics Letters, 93 (2008) 083108.
[9] X. Zhang, O. Anderoglu, A. Misra, H. Wang, Influence of deposition rate on the formation of growth twins in sputter-deposited 330 austenitic stainless steel films, Applied Physics Letters, 90 (2007) 153101.
[10] P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum, 56 (2000) 159-172.
[11] P.J. Kelly, R.D. Arnell, The influence of magnetron configuration on ion current density and deposition rate in a dual unbalanced magnetron sputtering system, Surface and Coatings Technology, 108-109 (1998) 317-322.
[12] L.A.R. Abbaschian, R.E. Reed-hill, Physical metallurgy principles, 4th ed.
[13] C.-M. Liu, H.-W. Lin, C.-L. Lu, C. Chen, Effect of grain orientations of Cu seed layers on the growth of (111) oriented nanotwinned Cu, Scientific reports, 4 (2014) 6123.
[14] Y. Zhao, T.A. Furnish, M.E. Kassner, A.M. Hodge, Thermal stability of highly nanotwinned copper: The role of grain boundaries and texture, J. Mater, 27 (2012) 3049-3057.
[15] O. Anderoglu, H.W. A. Misra, X. Zhang, Thermal stability of sputtered Cu films with nanoscale growth twins, Journal of Applied Physics, 103 (2008).
[16] Y.-S. Huang, C.-M. Liu, W.-L. Chiu, C. Chen, Grain growth in electroplated (111)-oriented nanotwinned Cu, Scripta Materialia, 89 (2014) 5-8.
[17] J. Vetter, Vacuum arc coatings for tools: potential and application, Surface and Coatings Technology, 76–77, Part 2 (1995) 719-724.
[18] T.B. Massalski, Binary alloy phase diagrams.
[19] International centre for diffraction data, Joint committee on powder diffraction standards (JCPDS) database. Card No. 11-0065.
[20] N.N. Greenwood, A. Earnshaw, Chemistry of the elements, (1984).
[21] L. Cunha, M. Andritschky, K. Pischow, Z. Wang, A. Zarychta, A.S. Miranda, A.M. Cunha, Performance of chromium nitride based coatings under plastic processing conditions, Surface and Coatings Technology, 133–134 (2000) 61-67.
[22] S.N. L'Vov, V.F. Nemchenko, P.S. Kislyi, T.S. Verkhoglyadova, T.Y. Kosolapova, The electrical properties of chromium borides, carbides, and nitrides, Powder Metall Met Ceram, 1 (1962) 243-247.
[23] S.L.P. Dale L. Perry, Handbook of inorganic compounds, (1995).
[24] H.O. Pierson, Handbook of refractory carbides and nitrides, (1996).
[25] H.A. Wriedt, J.L. Murray, The N-Ti (Nitrogen-Titanium) system, Bulletin of Alloy Phase Diagrams, 8 (1987) 378-388.
[26] X.H. Chen, L. Lu, K. Lu, Electrical resistivity of ultrafine-grained copper with nanoscale growth twins, Journal of Applied Physics, 102 (2007) 083708.
[27] I.J. Beyerlein, X. Zhang, A. Misra, Growth twins and deformation twins in metals, Annual Review of Materials Research, 44 (2014) 329-363.
[28] J.W. Christian, S. Mahajan, Deformation twinning, Progress in Materials Science, 39 (1995) 1-157.
[29] X.L. Wu, X.Z. Liao, S.G. Srinivasan, F. Zhou, E.J. Lavernia, R.Z. Valiev, Y.T. Zhu, New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals, Physical Review Letters, 100 (2008) 095701.
[30] Y.T. Zhu, T.G. Langdon, Influence of grain size on deformation mechanisms: An extension to nanocrystalline materials, Materials Science and Engineering: A, 409 (2005) 234-242.
[31] H. Suzuki, C.S. Barrett, Deformation twinning in silver-gold alloys, Acta Metallurgica, 6 (1958) 156-165.
[32] M.A. Meyers, O. Vöhringer, V.A. Lubarda, The onset of twinning in metals: a constitutive description, Acta Materialia, 49 (2001) 4025-4039.
[33] V. Germain, J. Li, D. Ingert, Z.L. Wang, M.P. Pileni, Stacking faults in formation of silver nanodisks, The Journal of Physical Chemistry B, 107 (2003) 8717-8720.
[34] G. Meng, Y. Shao, T. Zhang, Y. Zhang, F. Wang, Synthesis and corrosion property of pure Ni with a high density of nanoscale twins, Electrochimica Acta, 53 (2008) 5923-5926.
[35] F. Sun, G. Meng, T. Zhang, Y. Shao, F. Wang, C. Dong, X. Li, Electrochemical corrosion behavior of nickel coating with high density nano-scale twins (NT) in solution with Cl−, Electrochimica Acta, 54 (2009) 1578-1583.
[36] M. Chen, E. Ma, K.J. Hemker, H. Sheng, Y. Wang, X. Cheng, Deformation twinning in nanocrystalline aluminum, Science, 300 (2003) 1275-1277.
[37] G. Meng, L. Wei, Y. Shao, T. Zhang, F. Wang, C. Dong, X. Li, High pitting corrosion resistance of pure aluminum with Nanoscale Twins, Journal of The Electrochemical Society, 156 (2009) C240-C245.
[38] X. Zhang, O. Anderoglu, R.G. Hoagland, A. Misra, Nanoscale growth twins in sputtered metal films, JOM, 60 (2008) 75-78.
[39] F.K. Yan, G.Z. Liu, N.R. Tao, K. Lu, Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles, Acta Materialia, 60 (2012) 1059-1071.
[40] E.A. Brandes, G.B. Brook, Smithells metals reference book, (1998).
[41] S.D. Dahlgren, W.L. Nicholson, M.D. Merz, W. Bollmann, J.F. Devlin, R. Wang, Microstructural analysis and tensile properties of thick copper and nickel sputter deposits, Thin Solid Films, 40 (1977) 345-353.
[42] A.P. Sutton, R.W. Balluffi, Interfaces in crystalline materials, (1995).
[43] D. Xu, V. Sriram, V. Ozolins, J.-M. Yang, K.N. Tu, G.R. Stafford, C. Beauchamp, I. Zienert, H. Geisler, P. Hofmann, E. Zschech, Nanotwin formation and its physical properties and effect on reliability of copper interconnects, Microelectronic Engineering, 85 (2008) 2155-2158.
[44] C. Saldana, T.G. Murthy, M.R. Shankar, E.A. Stach, S. Chandrasekar, Stabilizing nanostructured materials by coherent nanotwins and their grain boundary triple junction drag, Applied Physics Letters, 94 (2009) 021910.
[45] M. Upmanyu, D.J. Srolovitz, L.S. Shvindlerman, G. Gottstein, Molecular dynamics simulation of triple junction migration, Acta Materialia, 50 (2002) 1405-1420.
[46] U. Czubayko, V.G. Sursaeva, G. Gottstein, L.S. Shvindlerman, Influence of triple junctions on grain boundary motion, Acta Materialia, 46 (1998) 5863-5871.
[47] L.E. Murr, Interfacial phenomena in metals and alloys, (1975).
[48] R.-M. Keller, S.P. Baker, E. Arzt, Quantitative analysis of strengthening mechanisms in thin Cu films: Effects of film thickness, grain size, and passivation, Journal of Materials Research, 13 (1998) 1307-1317.
[49] S. Vaidya, A.K. Sinha, Effect of texture and grain structure on electromigration in Al-0.5%Cu thin films, Thin Solid Films, 75 (1981) 253-259.
[50] M. Hommel, O. Kraft, Deformation behavior of thin copper films on deformable substrates, Acta Materialia, 49 (2001) 3935-3947.
[51] R.P. Vinci, E.M. Zielinski, J.C. Bravman, Thermal strain and stress in copper thin films, Thin Solid Films, 262 (1995) 142-153.
[52] F.H. Herbstein, B.L. Averbach, The structure of lithium-magnesium solid solutions—II: Measurements of diffuse X-ray scattering, Acta Metallurgica, 4 (1956) 414-420.
[53] H.J. Frost, C.V. Thompson, D.T. Walton, Simulation of thin film grain structures—I. Grain growth stagnation, Acta Metallurgica et Materialia, 38 (1990) 1455-1462.
[54] H.J. Frost, C.V. Thompson, D.T. Walton, Simulation of thin film grain structures—II. Abnormal grain growth, Acta Metallurgica et Materialia, 40 (1992) 779-793.
[55] T. Takewaki, H. Yamada, T. Shibata, T. Ohmi, T. Nitta, Formation of giant-grain copper interconnects by a low-energy ion bombardment process for high-speed ULSIs, Materials Chemistry and Physics, 41 (1995) 182-191.
[56] J. Greiser, P. Müllner, E. Arzt, Abnormal growth of “giant” grains in silver thin films, Acta materialia, 49 (2001) 1041-1050.
[57] N.J. Park, D.P. Field, M.M. Nowell, P.R. Besser, Effect of film thickness on the evolution of annealing texture in sputtered copper films, Journal of Elec Materi, 34 (2005) 1500-1508.
[58] P. Sonnweber-Ribic, P. Gruber, G. Dehm, E. Arzt, Texture transition in Cu thin films: Electron backscatter diffraction vs. X-ray diffraction, Acta Materialia, 54 (2006) 3863-3870.
[59] E.M. Zielinski, R.P. Vinci, J.C. Bravman, Effects of barrier layer and annealing on abnormal grain growth in copper thin films, Journal of Applied Physics, 76 (1994) 4516-4523.
[60] C.B.C. David B. Williams, Transmission electron microscopy : a textbook for materials science, (2009).
[61] M.K. Adam J. Schwartz, Brent L. Adams, David P. Field, Electron backscatter diffraction in materials science, (2009).
[62] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, 7 (1992) 1564-1583.
[63] C.H. Ma, J.H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films, 418 (2002) 73-78.
[64] Mechanics of materials 23 (1996) 314.
[65] A.C. Fischer-Cripps, P. Karvánková, S. Vepřek, On the measurement of hardness of super-hard coatings, Surface and Coatings Technology, 200 (2006) 5645-5654.
[66] S.P. Riege, C.V. Thompson, Modeling of texture evolution in copper interconnects annealed in trenches, Scripta Materialia, 41 (1999) 403-408.
[67] C.V. Thompson, R. Carel, Stress and grain growth in thin films, Journal of the Mechanics and Physics of Solids, 44 (1996) 657-673.
[68] B.E. Sundquist, A direct determination of the anisotropy of the surface free energy of solid gold, silver, copper, nickel, and alpha and gamma iron, Acta Metallurgica, 12 (1964) 67-86.
[69] C.V. Thompson, R. Carel, Texture development in polycrystalline thin films, Materials Science and Engineering: B, 32 (1995) 211-219.