研究生: |
蕭博鈞 Hsiao, Bo-Jiun |
---|---|
論文名稱: |
過渡金屬硫屬化物原子置換摻雜與金半接觸特性分析 Substitution Doping and Metal/Semiconductor Contact Improvement for TMDC |
指導教授: |
邱博文
Chiu, Po-Wen |
口試委員: |
林彥甫
Lin, Yen-Fu 李奎毅 LEE, Kuei-Yi |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2021 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 二維半導體 、過渡金屬硫屬化物 、原子置換 、摻雜 、金半特性 |
外文關鍵詞: | substitution doping |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二維材料在過去二十年以來發展迅速,非常有潛力成為下個世代的主流半導體材料,但二維半導體受限於其原生的材料特性,相比於三維矽半導體,二維材料難以進行摻雜且存在金半接觸的費米釘扎等問題,導致其電晶體效能被嚴重的限制,在本論文中,分別提出了兩個方法改善了上述的問題。針對材料的摻雜,我們成功的利用原子擴散的方式將過渡金屬原子與硫族原子置換摻雜;而金半接觸的改良,我們利用氫電漿處理的方式,使接觸區域的二維半導體金屬化,強化過渡金屬與電極金屬的耦合,提升了載子的注入效率,成功地讓金半接面由蕭基接觸特性轉為歐姆接觸特性,等效降低了接觸電阻,提升電晶體的效能。
Over the past decade, the two-dimensional (2D) layered materials have surged and been expected to become the next generation semiconductor materials. But there exist two main problems for 2D materials: One is the doping issue, compared with silicon semiconductor, we can not use ion implantation due to its atomic structure properties. Here we propose a method for site-selective doping to achieve substitutional doping in 2D material. The other is the metal/semiconductor contact issue, we use hydrogen plasma treatment to make the contact area metallization, increases the coupling between transition metal and electrode metal, which can improve the carrier injection efficiency and successfully boost the performance of 2D FET.
[1] W. Shockley, “The path to the conception of the junction transistor,” IEEE Transactions on Electron Devices, vol. 23, no. 7, pp. 597–620, 1976.
[2] Steve Jurvetson, “122 years of moore’s law.” https://flic.kr/p/2mihXZU, 2021.
[3] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56–58,Nov. 1991.
[4] R. E. Smalley, “Discovering the fullerenes,” Reviews of Modern Physics, vol. 69,no. 3, p. 723, 1997.
[5] Y.H. Wang, K.J. Huang, and X. Wu, “Recent advances in transitionmetal dichalcogenides based electrochemical biosensors: A review.,” Biosensors bioelectronics,vol. 97, pp. 305–316, 2017.
[6] M. Chhowalla, H. S. Shin, G. Eda, L.J. Li, K. P. Loh, and H. Zhang, “The chemistry of twodimensional layered transition metal dichalcogenide nanosheets,” vol. 5,pp. 263–275, Mar. 2013.
[7] A. Kuc and T. Heine, “The electronic structure calculations of twodimensional transitionmetal dichalcogenides in the presence of external electric and magnetic fields,” vol. 44, no. 9, pp. 2603–2614, 2015.
[8] J. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” vol. 18,pp. 193–335, May 1969.
[9] A. Armano and S. Agnello, “Twodimensional carbon: A review of synthesis methods, and electronic, optical, and vibrational properties of singlelayer graphene,”vol. 5, p. 67, Nov. 2019.
[10] A. K. Geim and K. S. Novoselov, “The rise of graphene,” vol. 6, pp. 183–191, Mar. 2007.
[11] Wikipedia contributors, “Graphene — Wikipedia, the free encyclopedia.” https://en.wikipedia.org/w/index.php?title=Graphene&oldid=1050194547, 2021. [Online; accessed 21October2021].
[12] L. Tang, J. Tan, H. Nong, B. Liu, and H.M. Cheng, “Chemical vapor deposition growth of twodimensional compound materials: Controllability, material quality, and growth mechanism,” vol. 2, pp. 36–47, Dec. 2020.
[13] J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon Vlsi Technology. Prentice Hall, 2012.
[14] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H. Y. Hwang, Y. Cui, and Z. Liu, “Controlled growth of highquality monolayer WS2 layers on sapphire and imaging its grain boundary,” vol. 7, pp. 8963–8971, Sept. 2013.
[15] C.C. Lu, Y.C. Lin, Z. Liu, C.H. Yeh, K. Suenaga, and P.W. Chiu, “Twisting bilayer graphene superlattices,” vol. 7, pp. 2587–2594, Mar. 2013.
[16] S. Amini, J. Garay, G. Liu, A. A. Balandin, and R. Abbaschian, “Growth of large area graphene films from metalcarbon melts,” vol. 108, p. 094321, Nov. 2010.
[17] Wikipedia contributors, “Raman spectroscopy — Wikipedia, the free encyclopedia.”https://en.wikipedia.org/w/index.php?title=Raman_spectroscopy&oldid=1050606578, 2021. [Online; accessed 11November2021].
[18] J. L. Verble and T. J. Wieting, “Lattice mode degeneracy in MoS2and other layer compounds,” vol. 25, pp. 362–365, Aug. 1970.
[19] G. L. Frey, R. Tenne, M. J. Matthews, M. S. Dresselhaus, and G. Dresselhaus, “Raman and resonance raman investigation ofMoS2nanoparticles,” vol. 60, pp. 2883–2892, July 1999.
[20] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. M. de Vasconcellos, and R. Bratschitsch, “Photoluminescence emission and raman response of monolayer MoS_2, MoSe_2,
and WSe_2,” vol. 21, p. 4908, Feb. 2013.
[21] A. Berkdemir, H. R. Gutiérrez, A. R. BotelloMéndez, N. PereaLópez, A. L. Elías, C.I. Chia, B. Wang, V. H. Crespi, F. LópezUrías, J.C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using raman spec
troscopy,” vol. 3, Apr. 2013.
[22] J. H. Simmons and K. S. Potter, Optical materials. Academic Press, 2000.
[23] W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” vol. 7,pp. 791–797, Dec. 2012.
[24] S. Bertolazzi, S. Bonacchi, G. Nan, A. Pershin, D. Beljonne, and P. Samorì, “Engineering chemically active defects in monolayer MoS2transistors via ionbeam irradiation and their healing via vapor deposition of alkanethiols,” vol. 29, p. 1606760, Mar. 2017.
[25] Z. Qin, L. Loh, J. Wang, X. Xu, Q. Zhang, B. Haas, C. Alvarez, H. Okuno, J. Z. Yong, T. Schultz, et al., “Growth of nbdoped monolayer ws2 by liquidphase precursor mixing,” ACS nano, vol. 13, no. 9, pp. 10768–10775, 2019.
[26] J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V. B. Shenoy, L. Shi, et al., “Janus monolayer transitionmetal dichalcogenides,” ACS nano, vol. 11, no. 8, pp. 8192–8198, 2017.
[27] H. Yuan, M. S. Bahramy, K. Morimoto, S. Wu, K. Nomura, B.J. Yang, H. Shimotani, R. Suzuki, M. Toh, C. Kloc, et al., “Zeemantype spin splitting controlled by an electric field,” Nature Physics, vol. 9, no. 9, pp. 563–569, 2013.
[28] D. B. Trivedi, G. Turgut, Y. Qin, M. Y. Sayyad, D. Hajra, M. Howell, L. Liu, S. Yang, N. H. Patoary, H. Li, et al., “Roomtemperature synthesis of 2d janus crystals and their heterostructures,” Advanced Materials, vol. 32, no. 50, p. 2006320, 2020.
[29] C. Ernandes, L. Khalil, H. Almabrouk, D. Pierucci, B. Zheng, J. Avila, P. Dudin, J. Chaste, F. Oehler, M. Pala, et al., “Indirect to direct band gap crossover in two dimensional ws 2 (1 x) se 2x alloys,” npj 2D Materials and Applications, vol. 5, no. 1, pp. 1–7, 2021.
[30] J. Wang, Q. Yao, C.W. Huang, X. Zou, L. Liao, S. Chen, Z. Fan, K. Zhang, W. Wu, X. Xiao, et al., “High mobility mos2 transistor with low schottky barrier contact by using atomic thick hbn as a tunneling layer,” Advanced materials, vol. 28, no. 37,
pp. 8302–8308, 2016.
[31] G.S. Kim, S.H. Kim, J. Park, K. H. Han, J. Kim, and H.Y. Yu, “Schottky barrier height engineering for electrical contacts of multilayered mos2 transistors with reduction of metalinduced gap states,” ACS nano, vol. 12, no. 6, pp. 6292–6300, 2018.
[32] H. Tang, B. Shi, Y. Pan, J. Li, X. Zhang, J. Yan, S. Liu, J. Yang, L. Xu, J. Yang, et al., “Schottky contact in monolayer ws2 fieldeffect transistors,” Advanced Theory and Simulations, vol. 2, no. 5, p. 1900001, 2019.