研究生: |
陳建志 |
---|---|
論文名稱: |
亞硝基錳硫化合物:電子順磁光譜、超導量子干涉儀、及單晶繞射儀之物理性質研究 Anionic/Dianionic Manganese-Thiolate Nitrosyl Complexes Characterized by EPR, SQUID, and Single-Crystal X-ray Diffraction |
指導教授: | 廖文峰 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 亞硝基錳硫化合物 、電子順磁光譜 、超導量子干涉儀 、單晶繞射儀 、錳 、一氧化氮 |
外文關鍵詞: | Manganese, Nitrosyl Complexes, EPR, SQUID, X-ray, Nitric oxide |
相關次數: | 點閱:109 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
將溶在MeOH的[Na]2[S,S-C6H3-R] 加入MnBr2和[PPN][Cl] (或是[Et4N][Br])的THF溶液中,即可合成出化合物 [(THF)Mn(S,S-C6H3-R)2] – (R = H (1a), Me (1b); thf = C4H8O),並根據電子順磁共振儀(Electron paramagnetic resonance,EPR)以及超導量子干涉磁量儀(Superconducting quantum interference device,SQUID)的結果說明化合物1a/1b的電子組態為High spin的d4型態。化合物1a/1b在CH2Cl2溶劑下會轉變為[Mn(S,S-C6H3-R)2]22- (R = H (2a), Me (2b)),根據EPR與SQUID的結果說明化合物2a/2b的電子組態為High spin的d4型態。
藉由還原劑[PPN][BH4]或[Et4N][BH4]將化合物2a/2b還原為 [Mn- (S,S-C6H3-R)2]2- (R = H (3a), Me (3b)),化合物3a/3b相當的空氣敏感,並且其電子組態為High spin的d5型態。藉由比較化合物1、2、3的金屬-配位基距離,可以知道當金屬氧化態越高時,造成金屬與配位基之間的距離縮短。化合物3a/3b在CH2Cl2或CH3CN溶劑下氧化後會同時形成化合物2a/2b與化合物 [Mn (S,S-C6 H3-R)3]22- (R = H (6a), Me (6b))的產物;在THF溶劑下氧化後則會形成化合物1a/1b。
將化合物2a/2b或3a/3b與NO反應後,分別生成 [(NO)Mn(S,S -C6H3-R)2] – (R = H (4a), Me (4b))與 [(NO)Mn(S,S-C6H3-R)2] 2- (R = H (5a), Me (5b))根據X-ray、IR、EPR與SQUID儀器的測量推測化合物4a/4b的電子組態為{Mn(NO)}5並且有{MnIII(NO•)}5與{Mn II(NO+)}5兩種狀況存在;化合物5a/5b的電子組態為{Mn(NO)}6並且也具有{MnIII(NO–)}6與{MnII(NO•)}6的共振性存在。在化合物4a/4b加入[PPN][S,NH2-C6H4]後會轉變為化合物5a/5b,並且其IR的吸收位置由1727(KBr)cm-1(4b)轉變成1650(KBr)cm-1(5b),這說明在還原過程中電子添加在NO的反鍵結(π-antibnding)軌域上而造成IR訊號大幅降低。將化合物5a/5b接觸氧氣後會生成化合物4a/4b與6a/6b,化合物6a/6b其電子組態為High spin的d3型態。
The anionic mononuclear Mn-thiolate complexes [(thf)Mn(S,S-C6H3-R)2]– (R = H (1a), Me (1b) was assigned as a high spin d4 (Mn(III)) electronic structure based on EPR and SQUID analysis. Presumably, the role of tetrahydrofuran ligand coordinated to the Mn(III) center in complexes 1a/1b is to reimburse the electron deficiency of the Mn(III) center as well as to stabilize the Mn(III) oxidation level. The conversion of complexes 1a/1b to the stable dimeric [Mn(S,S-C6H3-R)2]2 2– (R = H (2a), Me (2b)) was displayed when CH2Cl2 solvent was added into complexes 1a and 1b at ambient temperature. Formation of complexes 2a/2b can be interpreted as coordinative association of two anionic mononuclear [Mn(S,S-C6H3-R)2]– in the absence of thf coordinating solvent. The electronic configuration of complexes 2a/2b was assigned as high spin d4 Mn(III) in a square pyramidal ligand field.
Complex 2a/2b was reduced by [PPN][BH4] (or [Et4N][BH4]) to yield [Mn(S,S-C6H3-R)2] 2– (R = H (3a), Me (3b)). The electronic configuration of complexes 3a/3b was assigned as high spin d5 Mn(II) in a tetrahedral ligand field. Reaction of complexes 2a/2b and NO(g) afforded a discrete mononitrosyl-manganese [(NO)Mn(S,S-C6H3-R)2]– (R = H (4a), Me (4b)) assigned as the resonance hybrid of {MnIII-NO˙} and {MnII-NO+} electronic configuration in a square pyramidal ligand field.
Complexes 3a/3b was nitrosylated to produce [(NO)Mn(S,S-C6H3-R)2] 2– (R = H (5a), Me (5b)). The {Mn(NO)}6 5a/5b was best described as the resonance hybrid of {MnIII-NO–} and {MnII-NO˙} electronic configuration in a square pyramidal ligand field. The complexes 5a/5b was oxidized to yield [Mn(S,S-C6H3-R)3] 2– (R = H (6a), Me (6b)). The electronic configuration of complexes 6a/6b was assigned as high spin d3 Mn(IV) in a distorted octahedral ligand field.
1. Ibers, J.A.; Holm, R. H. Science 1980 , 209 ,223.
2. Nablo, B. J.;Schoenfisch, M. H. Biomaterials. 2005, 26, 4405.
3. Culotta, E.; Koshland Jr., D. E. Science 1992 , 258 ,1862.
4. McCleverty, J. A. Chem. Rev. 2004, 104, 403.
5. Richter-Addo, G. B.; Legzdins, P.; Burstyn, J. Chem.Rev. 2002,102, 857.
6. George B. Richter-Addo. Metal Nitrosyls. Oxford University Press, New York, 1992.
7. Enemark, J. H.; Feltham, R. D. Coord. Chem. Rev. 1974, 13, 339.
8. Miessler, G. L.; Tarr, D. A. Inorganic chemistry 2nd., Prentice Hall, New Jersey; 1999, p 443.
9. Franz, K. J.; Lippard, S. J. J. Am. Chem. Soc. 1998, 120, 9034.
10. Brown, C. A.; Pavlosky, M. A.; Westre, T. E.; Zhang,Y.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc., 1995, 117(2), 715.
11. Cullity, B. D. Introduction to magnetic materials. Addison-Wesley Publishing Company, Canada, 1972.
12. Anthony, R. W. Basic solid state chemistry 2nd., John Wiley and Sons, inc., New York, 1999.
13. 楊鴻昌, 科儀新知雙月刊第62期, 第十二卷, 第六期, 國家實驗研究院儀器科技研究中心, 1991年, 六月, p72.
14. Dante Gatteschi; Roberta Sessoli: Jacques Villain. Molecular Nanomagnets., Oxford University Press, New York, 2006., p 50.
15. Josephson, B. D. Phys. Lett. 1962, 1, 251.
16. Franz Schwabl. Quantum Mechanics., Springer-Verlag Berlin Heidelberg, New York, 1992, p143.
17. John, A. W.; James, R. B.; John, E. W. Electron Paramagnetic Resonance- Elementary Theory and Practical Applications. John Wiley and Sons, inc., Canada. 1994.
18. Lawrence Que, Jr. Physical Methods in Bioinorganic Chemistry. Sausalito, California, 2000.
19. Herebian, D.; Bothe, E.; Bill, E.; Weyhermuller, T.; Wieghardt, K. J. Am. Chem. Soc. 2001, 123, 10012.
20. Liu, H. M.; Tsai, S-J. J.; Cheng, F. C.; Chung S. Y. Anal. Chim. Acta., 2000, 405, 197.
21. Klaus Greiwe.; Bernt Krebs.; and Gerald Henkel. Inorg. Chem. 1989, 28, 3713.
22. Cheng, R. J.; Chang, S.-H.; Hung, K.-C. Inorg. Chem. 2007, 46(6), 1948.
23. Cheng, R. J.; Chen P.Y.; Timothy Lovell; Tiqing Liu; Louis Noodleman; David A. Case. J. Am. Chem. Soc., 2003, 125, 6774.
24. Akira Ikezaki; Mikio Nakamura; Cheng R. J., Chemistry Letters. 2006, 35, 156.
25. Scheidt, W. R.; Hatano, K.; Rupprecht, G. A.; Piciulo, P. L. Inorg. Chem. 1979, 18, 292-299.
26. Zahran, Z. N.; Shaw, M. J.; Khan, M. A.; Richter-Addo, G. B. Inorg. Chem. 2006, 45(6). 2661.
27. Kaushik Ghosh.; Aura A. Eroy-Reveles.; Belem Avila.; Theodore R. Holman.; Marilyn M. Olmstead.; Mascharak P. K. Inorganic Chemistry, 2004, 43, 2988.