簡易檢索 / 詳目顯示

研究生: 楊政翰
論文名稱: 離子佈植在磁性多層膜之研究與應用
Investigation and Application of Ion Irradiation in Magnetic Multilayers
指導教授: 賴志煌
Chih-Huang Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 129
中文關鍵詞: 離子佈植磁性多層膜交換場巨磁阻鐵鉑薄膜序化繪製
外文關鍵詞: Ion Irradiation, Magnetic Multilayers, Exchange Field, GMR, FePt Film, Ordering, Patterning
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著網際網路以及資訊多媒體蓬勃發展,人們對於高容量,小體積的資料儲存媒體需求日漸殷切。為了追求更高密度的資料儲存方式,就磁記錄媒體而言,不可避免的就是要開發出更靈敏的磁阻元件以及具有更高的磁異向性常數之材料。由於巨磁阻效應的發現,磁性多層膜以及磁性顆粒等磁性奈米結構已被廣泛的研究,此外,在邁向記錄的新世代,高異向性常數之材料,也將扮演關鍵性的角色。
    然而,在自旋元件邁向輕、薄、短、小的過程當中,許多傳統的製程將面臨瓶頸且不敷使用,所以如何開發新世代的磁記錄製程,相形顯得非常重要。近年來,離子佈植在磁性材料上應用,逐漸受到廣泛的重視。為了研究離子佈植對於磁性多層膜之影響,我們將朝(1)巨磁阻感測器與(2)鐵鉑薄膜,兩個主要部份進行研究。

    本篇論文著重於研究離子佈植在磁性多層膜的研究與應用。我們首先以離子槍鍍置自旋閥元件與鐵磁/反鐵磁雙層結構,或是利用磁控濺鍍系統製備鐵鉑薄膜,接著我們將利用各種不同種類之離子,調整不同入射能量,並且在佈植的過程中,施加外在磁場及改變佈植溫度,進而研究離子佈植與元件磁性質的關係。

    第一個主題為利用碳離子佈植入射於巨磁阻感測器中。由於碳離子在反鐵磁層中形成鎳錳(碳)或鉑錳(碳)的新相,我們觀察到交換場增加的現象。然而,隨著入射劑量增加,離子佈植造成界面處原子混合以及碳離子殘留於界面處,交換場與巨磁阻隨之減小。為了解決界面處因離子佈植而產生的問題,我們利用先加以熱處理再進行碳離子佈植的製程,成功地抑制巨磁阻的減少,同時仍然保有因佈植而產生增加交換場之效果。此外,在佈植過程中同時施加一反向磁場,因入射離子能量轉移,改變電子自旋方向,所以利用此方法,我們也在鈷鐵/鉑錳與鈷鐵/銥錳薄膜中,成功地反轉此二系統之交換場。

    第二個主題為利用氦離子佈植與離子束加熱,結合(1)離子能量轉移(2)缺陷產生(3)直接離子束加熱等三個因素,我們可在試片表面230℃的低溫,得到高序化度之鐵鉑合金。

    最後,我們並提出利用離子佈植來繪製磁性多層膜圖案之想法。


    As the rapid growth of the internet and multimedia, the demand for high density and small dimension recording increases dramatically. It is inevitable for magnetic recording media to develop more sensitive magnetoresistance devices and high magnetic anisotropy materials in the pursuit of higher recording density. Magnetic nanostructures, such as multilayers and granular solids, have been extensively studied, because of the observation of giant magnetoresistance (GMR). Also, the high magnetic anisotropy materials play a crucial role as the arrival of new recording generation.
    However, the traditional process will confront the insufficient dilemma as the spin devices forge ahead to the slim and small scale. It is important, therefore, to develop new magnetic recording process. In recent year, ion irradiation has drawn much attention as a potential tool to modify the magnetic properties and magnetic structure. In order to investigate the ion-irradiation effect on the magnetic multilayers, two irradiation topics will be studied: (1) GMR sensor (2) FePt film.

    This work has focused on the investigation and application in magnetic multilayers. We first used an ion beam or a magnetron sputtering system to deposit F/AF bilayers, PtMn-based spin valves and FePt films. A variety of incident ion dose and energy as well as different magnitude of external magnetic fields and temperatures during ion irradiation was utilized to investigate the correlation between the ion irradiation effect and magnetic behavior.

    The first topic is the GMR sensors irradiated by carbon ion irradiation. The enhancement of exchange field was observed after irradiation due to the formation of new phase PtMn(C) or NiMn(C). With further increasing ion dose, however, carbon ions residue and intermixing at interface lead to the reduction of exchange field and GMR ratio. By appropriate annealing prior to irradiation, we can obtain an enhanced exchange field and an almost unchanged GMR to solve the problem of interface intermixing. In addition, the exchange field of CoFe/PtMn and CoFe/IrMn can be reversed by C-ion irradiation with external magnetic field antiparallel to the direction of initialized exchange field during irradiation because of the spin direction affected by energy transfer.

    The second topic is the He-ion irradiation with beam heating in FePt films. The highly ordered FePt L10 phase can be obtained a by using irradiation-induced heating process. Combining the following effects (1) microscopic energy transfer between incident ions and FePt atoms, (2) excess point defects in FePt films and (3) direct beam heating, the ordering of FePt can be achieved at the nominal surface temperature as low as 230℃.

    Finally, we propose the idea of patterning magnetic multilayers by ion irradiation.

    Abstract………………………………………………………………………I Acknowledgement……………………………………………………………V Contents……………………………………………………………………VI List of Figures……………………………………………………………X List of Tables…………………………………………………………XVII Chapter 1 Introduction……………………………………………………1 1.1 Motivation………………………………………………………………1 1.2 Outline of the Thesis………………………………………………4 Chapter 2 Background………………………………………………………5 2.1 Principles of Ion Irradiation……………………………………5 2.1.1 Introduction…………………………………………………………5 2.1.2 Basic Concepts of Ion Irradiation……………………………5 2.1.3 Advantages of Ion Irradiation…………………………………7 2.1.4 Problems/limitations of Ion Irradiation……………………8 2.1.5 Outlines of Ion Irradiation……………………………………8 2.1.5.1 Energy Loss Mechanisms…………………………………………8 2.1.5.2 Range Distribution……………………………………………13 2.1.5.3 Irradiation Damage ……………………………………………17 2.1.5.4 Channeling Effect………………………………………………21 2.1.5.5 Sputtering Effect………………………………………………22 2.1.5.6 SRIM Simulation Program………………………………………23 2.1.5.5 Sputtering Effect………………………………………………22 2.2 Characteristics of Magnetic Materials…………………………26 2.2.1 Exchange Anisotropy………………………………………………26 2.2.2 Giant Magnetoresistance (GMR) and Spin Valve……………27 2.2.3 Properties of Antiferromagnetic Layer………………………30 2.2.4 Properties of FePt………………………………………………32 2.2.5 Reduction of Ordering Temperature……………………………34 2.3 Previous Experiments and Reports of the Irradiation Effects on Magnetic Films………………………………………………35 2.3.1 The Investigation and Application of Ion Irradiation on Exchange Bias………………………………………………………………35 2.3.2 The Investigation and Application of Ion Irradiation in GMR and Spin Valves………………………………………………………37 2.3.3 The Investigation and Application of Ion Irradiation in Ferromagnetics……………………………………………………………38 2.3.3.1 Ion-induced Phase Transformation…………………………38 2.3.3.2 Enhancement of Magnetic Moment……………………………41 2.3.3.3 Rotating Magnetic Hysteresis………………………………42 2.3.3.4 Changing Interfacial Anisotropy……………………………43 2.3.4 The Investigation and Application of Ion Irradiation in Nano-Patterning……………………………………………………………45 2.3.4.1 GMR Sensor Patterning…………………………………………45 2.3.4.2 Patterning Media………………………………………………46 Chapter 3 Experimental and Analysis Technique……………………50 3.1 Experimental Flowing Chart………………………………………50 3.2 Experimental Technique……………………………………………51 3.3 Experimental and Analysis Equipment……………………………52 3.3.1 Irradiation System………………………………………………52 3.3.2 Annealing System…………………………………………………56 3.3.3 External Magnetic Field…………………………………………57 3.3.4 Magneto-Optical Kerr Effect (MOKE)…………………………58 3.3.5 Vibrating Sample Magnetometer (VSM)…………………………59 3.3.6 Four-Point Probe Measurement…………………………………60 3.3.7 X-Ray Diffraction (XRD)…………………………………………62 Chapter 4 Results and Discussions……………………………………64 4.1 Effects of Structure and Ion Irradiation on the Exchange Field of NiFe/NiMn………………………………………………………64 4.1.1 Introduction………………………………………………………64 4.1.2 Experimental Procedures…………………………………………66 4.1.3 Results and Discussions…………………………………………67 4.1.4 Conclusions…………………………………………………………75 4.2 Enhancement of Exchange Field and Reduction of GMR in PtMn-based Spin Valves by Ion Irradiation………………………………76 4.2.1 Introduction………………………………………………………76 4.2.2 Experimental Procedures…………………………………………76 4.2.3 Results and Discussions…………………………………………78 4.1.4 Conclusions…………………………………………………………84 4.3 Influence of Carbon Ion Dose on Exchange Field and GMR of Irradiated PtMn-based Spin Valves……………………………………85 4.3.1 Introduction………………………………………………………85 4.3.2 Experimental Procedures…………………………………………85 4.3.3 Results and Discussions…………………………………………86 4.3.4 Conclusions…………………………………………………………93 4.4 Reversing Exchange Fields in CoFe/PtMn and CoFe/IrMn Bilayers by Carbon Field-Irradiation………………………………94 4.4.1 Introduction………………………………………………………94 4.4.2 Experimental Procedures…………………………………………95 4.4.3 Results and Discussions…………………………………………96 4.4.4 Conclusions………………………………………………………102 4.5 Ion-Irradiation Induced Direct Ordering of L10 FePt Phase………………………………………………………………………103 4.5.1 Introduction………………………………………………………103 4.5.2 Experimental Procedures………………………………………105 4.5.3 Results and Discussions………………………………………105 4.5.4 Conclusions………………………………………………………111 4.6 Proof of Ion-Induced Ordered FePt L10 Phase………………111 4.7 Ideas of Patterning Magnetic Multilayers……………………115 4.7.1 Patterning Media…………………………………………………115 4.7.2 Patterning GMR Sensor…………………………………………118 Chapter 5 Summary………………………………………………………120 References…………………………………………………………………122 Publications List………………………………………………………129

    [1] W. H. Meiklehone and C. P. Bean, Phys. Rev. 102, 1413 (1956).
    [2] W. H. Meiklejohn and C. P. Bean, Phys. Rev. 105, 904 (1957).
    [3] A. P. Malozemoff, Phys. Rev. B 35, 3679 (1987).
    [4] D. Mauri, H. C. Siegmann, P. S. Bagus, and E. Kay, J. Appl. Phys. 62, 3047 (1987).
    [5] O. A. Ivanov, L. V. Solina, V. A. Demshina, and L. M. Magat, Phys. Met. Metall. 35, 81 (1973).
    [6] K. Coffey, M. A. Parker, and J. K. Howard, IEEE Trans. Magn. 31, 2737 (1995).
    [7] J. F. Ziegler, J. P. Biersak, and U. Littmark, “The Stopping of Ions in Matter” (Pergamon, New York, 1985); H.Ryssel and I. Ruge, “Ion Implantation” (John Willey & Sons Ltd., 1986); M. A. Kumakhov and F. F. Komarov “Energy Loss and Ion Ranges in Solids”, (Gordon and Breach Science Publishers, New York, 1979); D. Stievenard and J. C. Bourgoin, “Ion Implantation in Semiconductors” (Trans Tech Publications Ltd., Switzerland, 1988); H. Gnaserm, “Low-Energy Ion Irradiation of Solid Surfaces” (Springer-Verlag Ltd., Berlin, 1999); J. H. Liang “Principles of Ion Implantation” (Handout, NTHU, 2003).
    [8] N. Bohr, Phil. Mag. 25, 10 (1913).
    [9] W. K. Chu, J. W. Mayer, and M. A. Nicolet, “Backscattering Spectrometry” (Academic Press, New York, 1978).
    [10] J. F. Ziegler, and J. P. Biersak, http://www.srim.org/.
    [11] E. Fulcomer and S. H. Charp, J. Appl. Phys. 53, 184 (1972)
    [12] T. Ambrose, R. L. Sommer, and C. L. Chien, Phys. Rev. B 56, 83 (1997)
    [13] R. D. Hempstead, S. Krongelb, and D. A. Thompson, IEEE Trans. Magn. 14, 521 (1978).
    [14] B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R. Wilhoit, and D. Mauri, Phys. Rev. B 43, 1297 (1991).
    [15] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, and A. Friederich, Phys. Rev. Lett. 61, 2472 (1988).
    [16] J. C. S. Kools, IEEE Trans. Magn. 32, 3165 (1996).
    [17] H. Hoshiya, M. Komuro, K. Mitsuoka, and Y. Sugita, J. Magn. Soc. Japan 18, 355 (1994).
    [18] R.D. Hempstead, S. Krongelb, and D.A. Thompson, IEEE Trans. Magn. 14, 521 (1978).
    [19] H. Yoda, H. Iwasaki, T. Kobayashi, A. Tsutai, and M. Sahashi, IEEE Trans. Magn. 32, 3363 (1996).
    [20] M. Saito, Y. Kakihara, T. Watanabe, and N. Hasegawa, J. Magn. Soc. Japan 21, 505 (1996).
    [21] H. Kishi, Y. Kitada, Y. Miyaka, A. Tanaka, and K. Kobayashi, IEEE Trans. Magn. 32, 3380 (1996).
    [22] T. Lin, D. Mauri, N. Staud, C. Hwang, J. K. Howard, and G.L.Gorman, Appl. Phys. Lett. 65, 1183 (1994).
    [23] S. Maat, O. Hellwig, G. Zeltzer, Eric E. Fullerton, G. J. Mankey, M. L. Crow, and J. L. Robertson, Phys. Rev. B. 63, 134426 (2001).
    [24] T. Maeda, T. Kai, A. Kikitsu, T. Nagase, and J. Akiyama, Appl. Phys. Lett. 80, 2147 (2002).
    [25] S.-R. Lee, S. Yang, Y. K. Kim, and J. G. Na, Appl. Phys. Lett. 78, 4001 (2001).
    [26] Y.-N. Hsu, S. Jeong, D. Laughlin, and D. N. Lambeth, J. Appl. Phys. 89, 7068 (2001).
    [27] R. F. C. Farrow, D. Weller, R. F. Marks, M. F. Toney, A. Cebollada, and G. R. Harp, J. Appl. Phys. 79, 5967 (1996).
    [28] T. Shima, T. Moriguchi, S. Mitani, and K. Takanashi, Appl. Phys. Lett. 80, 288 (2002).
    [29] T. Mewes, R. Lopusnik, J. Fassbender, B. Hillebrands, M. Jung, D. Engel, A. Ehresmann, and H. Schmoranzer, Appl. Phys. Lett. 76, 1057 (2000).
    [30] A. Mougin, T. Mewes, M. Jung, D. Engel, A. Ehresmann, H. Schmoranzer, J. Fassbender, and B. Hillebrands, Phys. Rev. B. 63, 060409(R) (2001).
    [31] J. Juraszek, J. Fassbender, S. Poppe, T. Mewes, B. Hillebrands, D. Engel, A. Kronenberger, A. Ehresmann, and H. Schmoranzer, J. Appl. Phys. 91, 6896 (2002).
    [32] D. M. Kelly, I. K. Schuller, V. Korenivski, K. V. Rao, K. K. Larsen, J. Bottiger, E. M. Gyorgy, and R. B. van Dover, Phys. Rev. B. 50, 3481 (1994).
    [33] M. Cai, T. Veres, S. Roorda, R. W. Cochrane, R. Abdouche and M. Sutton, J. Appl. Phys. 81, 5200 (1997).
    [34] J. G. Lin, M. R. Wu, D. H. Ngu, C. Y. Huang and Sining Mao, J. Magn. Magn. Mater. 209, 128 (2000).
    [35] Z. B. Guo, D. You, J. J. Qiu, K. B. Li and Y. H. Wu, Solid State Commun. 120, 459 (2001).
    [36] A. Benyagoub, F. Levesque, F. Couvreur, C. Gibert-Mougel, C. Dufour, and E. Paumier, Appl. Phys. Lett. 77, 3197 (2000).
    [37] A. Cebollada, D. Weller, J. Sticht, G. R. Harp, R. F. C. Farrow, R. Marks, R. Savoy, and J. C. Scott, Phys. Rev. B 50, 3419 (1994).
    [38] D. Ravelosona, C. Chappert, V. Mathet, and H. Bernas, Appl. Phys. Lett. 76, 236 (2000).
    [39] D. Ravelosona, C. Chappert, H. Bernas, D. Halley, Y. Samson, and A. Marty, J. Appl. Phys. 91, 8082 (2002).
    [40] D. Ravelosona, T. Devolder, H. Bernas, C. Chappert, V. Mathet, D. Halley, Y. Samson, B. Gilles, and A. Marty, IEEE Trans. Magn. 37, 1643 (2001).
    [41] B. D. Cullity, “Introduction to Magnetic Materials” (Addison-Wesley, Reading, MA, 1972).
    [42] V. L. Moruzzi, Phys. Rev. Lett. 57, 2211 (1986).
    [43] G. S. Chang, Y. P. Lee, J.Y. Rhee, J. Lee, K. Jeong, and C. N. Whang, Phys. Rev. Lett. 87, 067208 (2001).
    [44] K. O’Grady and H. Laidler, J. Magn. Magn. Mater. 200, 616 (1999).
    [45] K. H. J. Buschow, “Materials Sciences and Technology”, 3A, Chap. 5 (VCH, New York, 1992).
    [46] S. I. Woods, S. Ingvarsson, J. R. Kirtley, H. F. Hamann, and R. H. Koch, Appl. Phys. Lett. 81, 1267 (2002).
    [47] G. S. Chang, T. A. Callcott, G. P. Zhang, and G. T. Woods, S. H. Kim, S. W. Shin, K. Jeong, C. N. Whang, and A. Moewes, Appl. Phys. Lett. 81, 3016 (2002).
    [48] D. Weller, H. Brändle, G. Norman, C.-J. Lin, and H. Notarys, Appl. Phys. Lett. 61, 2726 (1992).
    [49] C. Chappert, H. Bernas, J. Ferré, V. Kottler, J.-P. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, Science 280, 1919 (1998).
    [50] T. G. Kim, Y. H. Shin, J. H. Song, M. C. Sung, I. S. Kim, D. G. You, J. Lee, K. Jeong, G. Y. Jeon, and C. N. Whang, Appl. Phys. Lett. 81, 4017 (2002).
    [51] T. Devolder, J. Ferré, C. Chappert, H. Bernas, J.-P. Jamet, and V. Mathet, Phys. Rev. B. 64, 064415 (2001).
    [52] C. T. Rettner, S. Anders, J. E. E. Baglin, T. Thomson, and B. D. Terris, Appl. Phys. Lett. 80, 279 (2002).
    [53] M. C. Sung, D. G. You, H. S. Park, J. C. Lee, S. Y. Ie, I. S. Kim, J. Lee, C. N. Whang, S. Im, K. Jeong, T. G. Kim, J. S. Yang, and J. H. Song, J. Appl. Phys. 90, 2036 (2001).
    [54] A. Paul , A. Gupta , S. M. Chaudhari , D. M. Phase, S. Ghosh, and D. K. Avasthi, Nucl. Instrum. Methods Phys. Res. B. 156, 158 (1999).
    [55] L. Folks, J. E. E. Baglin, Andrew J. Kellock, Matthew J. Carey, B. D. Terris, and B. Gurney, IEEE Trans. Magn. 37, 1730 (2000).
    [56] B. D. Terris, L. Folks, D. Weller, J. E. E. Baglin, A. J. Kellock, H. Rothuizen, and P. Vettiger Appl. Phys. Lett. 75, 403 (1999).
    [57] T. Devolder, C. Chappert, Y. Chen, E. Cambril, H. Bernas, J. P. Jamet, and J. Ferré, Appl. Phys. Lett. 74, 3383 (1999).
    [58] C. Vieu, J. Gierak, H. Launois, T. Aign, P. Meyer, J. P. Jamet, J. Ferré, C. Chappert, T. Devolder, V. Mathet, and H. Bernas, J. Appl. Phys. 91, 3103 (2002).
    [59] P. Warin, R. Hyndman, J. Glerak, J. N. Chapman, J. Ferré, J. P. Jamet, V. Mathet, and C. Chappert, J. Appl. Phys. 90, 3850 (2001).
    [60] S. J. Pickart and R. Nathans, J. Appl. Phys. 34, 1203 (1963).
    [61] O. Hellwig, D. Weller, A. J. Kellock, J. E. E. Baglin, and E. E. Fullerton, Appl. Phys. Lett. 79, 1151 (2001).
    [62] A. Mougin, S. Poppe, J. Fassbender, B. Hillebrands, G. Faini, U. Ebels, M. Jung, D. Engel, A. Ehresmann, and H. Schmoranzer, J. Appl. Phys. 89, 6606 (2001).
    [63] W. M. Kaminsky, G. A. C. Jones, N. K. Patel, W. E. Booij, M. G. Blamire, S. M. Gardiner, Y. B. Xu, and J. A. C. Bland, Appl. Phys. Lett. 78, 1589 (2001).
    [64] G. Xiong, D. A. Allwood, M. D. Cooke, and R. P. Cowburn, Appl. Phys. Lett. 79, 3461 (2001).
    [65] D. Ozkaya ,R. M. Langford, W. L. Chan, and A. K. Petford-Long, J. Appl. Phys. 91, 9937 (2002).
    [66] G. J. Kusinski, K. M. Krishnan, G. Denbeaux, G. Thomas, B. D. Terris, and D. Weller, Appl. Phys. Lett. 79, 2211 (2001).
    [67] T. Lin, C. Tsang, R.E. Fontana, and J.K. Howard, IEEE Trans. Magn. 31, 2585 (1995).
    [68] S. Mao, S. Gangopadhay, N. Amin, E. Murdock, Appl. Phys. Lett. 69, 3593 (1996).
    [69] B.Y. Wang, C. Mitsumata, S. Prakash, D. Laughlin, T. Kobayashi, J. Appl. Phys. 79, 7896 (1996).
    [70] M.F. Toney, K. Hannibal, MMM Conference GA-06 (1999).
    [71] C.H. Lai, Y.H. Wang, W.C. Lien, C.K. Lo, IEEE Trans. Mag. 36, 2641 (2000).
    [72] C.H. Lai, W.C. Lien, F.R. Chen, J.J. Kai, S. Mao, J. Appl. Phys. 89, 6601 (2001).
    [73] P. Bayle-Guilemaul, A. K. Petford-Long, T. C. Anthony, J. A. Brug, IEEE Trans. Magn. 32, 4627 (1996).
    [74] P. Miltenyi, M. Gierlings, J. Keller, B. Beschoten, G. Guntheodt, U. Nowak, and K. D. Usadel, Phys. Rev. Lett. 84, 4224 (2000).
    [75] K. Takano, R.H. Kodama, A.E. Berkowitz, W. Cao, and G. Thomas, Phys. Rev. Lett. 79, 1130 (1997).
    [76] S. Mao and Z. Gao, IEEE Trans. Magn. 36, 2860 (2000).
    [77] Y. Sugita, Y. Kawawake, M. Satomi, and H. Sakakima, J. Appl. Phys. 89, 6919 (2001).
    [78] M. Frank, A. Singsaas, L. Stodolsky, and S. Cooper, Phys. Rev. B. 43, 5321 (1991).
    [79] F. Seitz, and J. S. Keohler, Solid State Phys. 2, 305 (1956).
    [80] Alexander E. Volkov, and Vladimir A. Borodin, Nucl. Instrum. Methods Phys. Res. B 193, 381 (2002).
    [81] W. Roberts, Acta Met. 2, 597 (1954).
    [82] J. A. Christodoulides, P. Farber, M. Daniil, H. Okumura, G. C. Hadjipanayis, V. Skumryev, A. Simopoulos, and D. Weller, IEEE Trans. Magn. 37, 1292 (2001).
    [83] D. H. Zhu, H. B. Lu, K. Tao, and B. X. Liu, J. Phys. Condens. Matter, 5, 5505 (1993).
    [84] L. Folks, R. E. Fontana, B. A. Gurney, J. R. Childress, S. N. Maat, J. A. Katine, J. E. Baglin, K. J. Andrew, and P. A. Saunders, MMM Conference DD-13 (2002).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE