簡易檢索 / 詳目顯示

研究生: 尹麗莎
Karen Elisa Ochaeta Paz
論文名稱: Fraud Detection for Internet Auctions: A Data Mining Approach
以資料探勘技術進行網路拍賣之詐欺偵測
指導教授: 魏志平
Chih-Ping Wei
口試委員:
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 科技管理研究所
Institute of Technology Management
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 54
中文關鍵詞: 網路拍賣網路拍賣詐騙詐騙偵測數據採樣樹狀決策歸納演算法
外文關鍵詞: Internet Auction, Internet Auction Fraud, Fraud Detection, Data Mining, Decision Tree Induction, Support Vector Machines
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Internet auctions are a clear example of how information and networking technologies have transformed traditional trading processes limited to specific events and products, into pervasive and thriving electronic business models enabled by the Internet; they have increased the variety of goods and services that can be traded using auction mechanisms and reduced transaction costs for both buyers and sellers. Nevertheless, due to the characteristics of electronic transactions, it is difficult to distinguish genuine sources of information from fraudulent ones, increasing the vulnerability of participants to be victims of fraudsters. Since Internet auction fraud has become the most frequently reported form of Internet scams, auction websites are trying to provide protection to their customers implementing new services that threaten the low cost structure of this business model and may as well increase the complexity of transactions over time. To counteract the effects of fraud and the threat that it poses to the future of auction websites, specifically the consumer-to-consumer type, this study provides a data mining approach to fraud detection based on variables derived from auctioneers’ transaction history. Using the historical data recorded on Yahoo! Auction site for the transactions of both fraudsters and legitimate auctioneers, our proposed fraud detection model outperforms similar methods aimed at identifying potential fraudsters among participants of Internet auctions.


    ACKNOWLEDGEMENT..........................................................................................................III LIST OF TABLES....................................................................................................................VII LIST OF FIGURES.................................................................................................................VIII CHAPTER 1 INTRODUCTION.................................................................................................1 1.1 BACKGROUND..................................................................................................................1 1.2 MOTIVATION....................................................................................................................2 1.3 OBJECTIVE......................................................................................................................3 CHAPTER 2 LITERATURE REVIEW....................................................................................4 2.1 INTERNET AUCTIONS........................................................................................................4 2.2 TYPES OF INTERNET AUCTIONS........................................................................................6 2.3 INTERNET AUCTION FRAUD...........................................................................................10 2.3.1 Types of Fraud on Internet Auctions.....................................................................13 2.4 EXISTING MECHANISMS FOR FRAUD DETECTION ON INTERNET AUCTIONS....................15 2.4.1 Auction Communities.............................................................................................15 2.4.2 Feedback-based Reputation Systems.....................................................................16 2.4.3 Data Mining Approach..........................................................................................18 2.4.4 Social Network Analysis........................................................................................22 CHAPTER 3 PROPOSED FRAUD DETECTION MODEL.................................................24 3.1 PROBLEM DESCRIPTION.................................................................................................24 3.2 VARIABLES....................................................................................................................24 3.2.1 Variables Based on Price of Items Sold.................................................................25 3.2.2 Variables Based on Transaction Frequency..........................................................26 3.2.3 Variables Related to Transaction Profile..............................................................27 3.2.4 Variables Based on Reputation/Feedback Ratings................................................28 3.3 CLASSIFICATION TECHNIQUES: C4.5 AND SUPPORT VECTOR MACHINES (SVM)...........30 CHAPTER 4 DATA COLLECTION AND EVALUATION DESIGN.................................33 4.1 DATA COLLECTION........................................................................................................33 v 4.2 EVALUATION DESIGN.....................................................................................................34 4.3 EVALUATION PROCEDURE AND CRITERIA......................................................................37 CHAPTER 5 EVALUATION RESULTS.................................................................................39 5.1 COMPARATIVE EVALUATION OF C4.5 AND SVM OF THE PROPOSED FRAUD DETECTION MODEL................................................................................................................................39 5.2 COMPARATIVE EVALUATION OF BENCHMARKS AND THE PROPOSED MODEL................42 CHAPTER 6 CONCLUSIONS AND FUTURE RESEARCH...............................................46 REFERENCES...........................................................................................................................48 APPENDIX 51 A.1 DATA GENERATED BY C4.5 AND SVM ALGORITHMS (USING WEKA VERSION 3.4.12) FOR THE PROPOSED FRAUD DETECTION MODELS.......................................................................51 A.2 AVERAGE RANKING OF ALL VARIABLES USED IN THE PROPOSED FRAUD DETECTION MODEL................................................................................................................................53

    eBay Inc. First Quarter 2008 Results. Retrieved on May 2008, from http://investor.ebay.com/results.cfm.
    Internet Crime Complaint Center. 2007 Internet Crime Report. Federal Bureau of Investigation and National White Collar Crime Center. Retrieved on January 2008, from http://www.ic3.gov/media/annualreports.aspx.
    National Consumers League’s Fraud Center. 2007 Internet Fraud Statistics. Retrieved on January 2008, from http://www.fraud.org/.
    Albert, M. R. (2002). E-buyer Beware: Why Online Auction Fraud Should be Regulated. American Business Law Journal, 39(4), pp. 575-643.
    Bapna, R., Goes, P., and Gupta, A. (2001). Insights and Analyses of Online Auctions. Communications of the ACM, 44(11), pp. 42-50
    Chau, D. H. and Faloutsos, C. (2005). Fraud Detection in Electronic Auction. Proceedings of European Web Mining Forum (EWMF 2005) at ECML/PKDD, October 3-7, Porto, Portugal.
    Chau, D. H., Pandit, S., and Faloutsos, C. (2006). Detecting Fraudulent Personalities in Network of Online Auctioneers. Proceedings of PKDD, Sept 18-22, Berlin, Germany. pp. 103-114.
    Engebretsen, O. (1999). Internet Auction Models. Financial Information Systems and Technologies, Stockholm School of Economics, pp. 1-20
    Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). From Data Mining to Knowledge Discovery in Databases. American Association for Artificial Intelligence, pp. 37-54.
    Gregg, D.G. and Scott, J.E. (2006). The Role of Reputation Systems in Reducing On-Line Auction Fraud. International Journal of Electronic Commerce, 10 (3), pp. 95-120.
    Han, J. and Kamber, M. (2001). Data Mining: Concepts and Techniques. San Mateo, CA: Morgan Kaufmann.
    Hahn, J. (2001). The Dynamics of Mass Online Marketplaces: A Case Study of an Online Auction. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Seattle, Washington, pp. 317-324.
    Huang, C.E. and Wareham, J. (2004). Fighting Internet Auction Fraud: An Assessment and Proposal. IEEE Computer Society Journal, pp. 31-37.
    48
    Huang, C.E., Wareham, J., and Robey D. (2002). Anti-Fraud Mechanisms in Internet Auctions: The Roles of Markets, Hierarchies and Communities of Practice. International Conference on Information Systems, Barcelona, Spain, pp. 1-47.
    Klosgen, W. and Zytkow, J.M. (2002). Handbook of Data Mining and Knowledge Discovery. Oxford University Press, pp. 726-731.
    Ku, Y., Chen, Y., and Chiu, C. (2007). A Proposed Data Mining Approach for Internet Auction and Fraud Detection. Intelligence and Security Informatics, 4430, pp. 238-243.
    Kumar, M. and Feldman, S.I. (1998). Internet Auctions. Proceedings of the Third Workshop on Electronic Commerce, pp. 1-12.
    Loh, S. (2002). Continuous Assurance of E-Business Transactions for Fraud Detection. SEAR: Security, E-Business, Assurance Research Group, Australia, pp. 1-12.
    Nikitkov, A.N. and Stone, D.N. (2006). Online Auction Deception: A Forensic Case Study of an Opportunistic Seller. Business and Economics Journal, pp. 2-42.
    Ockenfels, A., Reiley, D., and Sadrich, A. (2006). Online Auctions. National Bureau of Economic Research, pp. 1-68.
    Pandit, S., Chau, D. H., Wang, S., and Faloutsos, C. (2007). NetProbe: A Fast and Scalable System for Fraud Detection in Online Auction Networks. Proceedings of the 16the International Conference on World Wide Web (WWW '07), May 8-12, Banff, Alberta, Canada. pp. 201-210
    Pinker, E.J., Seidmann, A., and Vakrat, Y. (2003). Managing Online Auctions: Current Business and Research Issues. Management Science, 49(11), pp. 1457-1484.
    Quinlan, J.R. (1986). Induction of Decision Trees. Machine Learning, 1, pp. 81-106.
    Quinlan, J.R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann.
    Rubin, S., Christodorescu, M., Ganapathy, V., Giffin, J., Kruger, L., and Wang, H. (2005). An Auction Reputation System based on Anomaly Detection. Proceedings of the 12th ACM Conference on Computer and Communications Security CCS '05, pp. 270-279.
    Vapnik, V. N. (2000). The Nature of Statistical Learning Theory. New York, NY: Springer-Verlag.
    Wang, J.C. and Chiu, C.Q. (2004). Detecting Online Auction Inflated-Reputation Behaviors Using Social Network Analysis. National Science Council of Taiwan, pp. 1-9.
    49
    Wang, K., Wang, E., and Tai, C. (2002). A Study of Online Auction Sites in Taiwan: Product, Auction rule, and Trading type. International Journal of Information Management, 22, pp. 127-142.
    Wei, C., Piramuthu, S., and Shaw, M.J. (2003). Knowledge Discovery and Data Mining. Handbook of Knowledge Management. Berlin, Germany: Springer-Verlag, pp157-189.
    Weill, P. and Vitale, M.R. (2001). Place to Space: Migrating to eBusiness Models. Harvard Business School Press, Chapter 7, pp. 151-182.
    Wood, C.A. (2004). Current and Future Insights from Online Auctions. Handbook on Electronic Commerce, Springer-Verlag, pp. 1-20.
    Wurman, P. (2003). Online Auction Site Management. The Internet Encyclopedia, Vol. 2, Wiley, pp. 709-719.
    50

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE