簡易檢索 / 詳目顯示

研究生: 張鳳如
Chang, Feng-Ju
論文名稱: A Steganographic Method Using MRF-Synthesized Textures as Cover Images
以MRF生成之紋理為載體影像之藏密法
指導教授: 陳朝欽
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 26
中文關鍵詞: 藏密藏密學紋理MRF
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • With the highly developed technology, the Internet is closely combined with human life. The issue of how to protect personal privacy even commercial confidentiality is attention-getting. Steganography embed secret messages into multimedia as images, audios, videos and etc. to avoid hackers abstract or alter the important data from one’s sending documents. We adopt a grayscale statistical texture synthesizer based on MRF to generate an image of user-requested size to fit the secret message. Each of our synthesized texture images as cover images contains four gray values: 30, 100, 170, and 240. We encrypt secret messages via exponent and modulo operations. Then we partition the encrypted bit sequence of the secret message as many of 2-bit words: 00, 01, 10 and 11, thus each 2-bit word naturally corresponds to one of the four gray values 30, 100, 170 and 240. To be more secure, we adopt a circular shift technique on (30, 100, 170, 240) such that the same 2-bit words need not be embedded into the same pixel values and the security could be further ensured. Experiments are given to demonstrate our approach.


    隨著科技之高度發展,網際網路與日常生活的連結日益密切。如何保護個人資料甚至是商業機密亦日漸成為受注目之議題。藏密學是一種將機密資訊藏入多媒體資料,如影像、音訊、視訊等資料的方法。如此一來可降低引起駭客注意的可能性,避免有心人從我們所傳輸出去的資料中,竊取甚至是竄改資料。

    在此論文中,我們實作了以MRF為數學模型,可製造灰階統計型紋理的生成器,藉此產生能夠滿足藏入所有機密訊息所需之影像。我們讓此論文中產生之紋理僅包含了四種灰階值「30、100、170、240」。並將以指數模數運算加密後的二元機密訊息分割成四種2-bit word「00、01、10、11」如此一來便可以對應到紋理中所含之四種灰階值。爲了增加安全性,我們加入了旋轉的技巧,讓相同的2-bit word 不會都對應到相同的灰階值去做藏密。在此論文的最末,會列出實驗結果與數據。

    Chapter 1 Introduction…………………………………………………..………………1 Chapter 2 Background Review………………………………………………………….4 2.1 Texture synthesis based on Markov Random Field…………………………….….4 2.2 Discrete logarithm problems………....……………………………………………7 2.3 Reversible data hiding……………………………………………………………..8 2.4 Some Concepts of Quantum Cryptography………………………………………10 Chapter 3 Proposed Data Hiding Method……………………………………………..11 3.1 Motivation………………………………………………………………………..11 3.2 Procedure of embedding…………………………………………………………12 3.2.1 Embedding Algorithm……………………………………………………...14 3.2.2 An example…………………………………………………………………15 3.3 Extracting Algorithm……………………………………………………………..19 3.4 Discussion………………………………………………………………………..20 3.5 Experiments………………………………………………………………………20 Chapter 4 Conclusion and Future work…………………………….…………………24 References……………………………………………………………………………….25

    [Bend1996] W. Bender et al., “Techniques for Data Hiding,” IBM Systems J., 35(3), 313 - 336, 1996.
    [Benn1984] C. H. Bennett and G. Brassard, “Public key distribution and coin tossing,” IEEE Int’l Conference on Computers systems and Signal Processing, Vol. 175, 175-179, 1984.
    [Chan2001] R. Chandramouli and N. Memon, “Analysis of LSB based image
    steganography techniques,” IEEE Int’l Conference on Image Processing, Vol. 3, 1019 - 1022, 2001.
    [Chan2002] C.C. Chang and T.S. Chen, “A steganographic method based upon JPEG and quantization table modification,” Information Sciences, Vol. 141, No. 1 - 2, 123 - 138, 2002
    [Chen2003] C.C. Chen and C.C. Chen, ‘’Texture Synthesis: A Review and Experiments,” Journal of Information Science and Engineering, Vol. 19, No. 2, 371 - 380, 2003.
    [Chan2004] C.K. Chan and L.M. Cheng, “Hiding data in images by simple LSB substitution,” Pattern Recognition, Vol. 37, No. 3, 469 - 474, 2004.
    [Cox2008] I.J. Cox, M.L. Miller, J.A. Bloom, J. Fridrich, and T. Kalker, Digital Watermarking and Steganography, Morgan Kaufmann publisher, 429 - 495, 2008.
    [Cros1983] G.R. Cross and A.K. Jain, “Markov Random Field Texture Models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 5, No. 1, 25 - 39, 1983.
    [Dumi2003] S. Dumitrescu, X. Wu, and Z. Wang, “Detection of LSB steganography via sample pair analysis,” Int’l Workshop on Information Hiding, Berlin, 355 - 372, 2003.
    [Gord1993] D.M. Gordon, “Discrete logarithms in GF(p) using the number field sieve,” SIAM J. Discrete Math, Vol. 6, No. 1, 124 - 139, 1993.
    [Gul2009] G. Gul and F. Kurugollu, “A novel universal steganalyser design: LogSv,” IEEE Int’l Conference on Image Processing, 4249 - 4252, 2009.
    [John1998] N.F. Johnson and S. Jajodia, “Steganalysis of images Created Using Current Steganographic Software ,” Int’l Workshop in Information Hiding, Berlin, Vol. 1525, 273 - 289, 1998.
    [Ni2006] Z. Ni, Y.Q. Shi, N. Ansari, and W. Su, “Reversible data hiding,” IEEE Transaction on Circuits and Systems for Video Technology, Vol. 16, No. 3, 354 - 362, 2006.
    [Prov2003] N. Provos and P. Honeyman, “Hide and seek: an introduction to steganography,” IEEE Security & Privacy, Vol. 1, No. 3, 32 - 44, 2003.
    [Stin2006] D.R. Stinson, Cryptography: Theory and practice, Champman & Hall/CRC (2006).
    [Stuc2009] D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” IEEE Applied Physics Letters, Vol. 87, No. 19, 194108-1 - 194108-3, 2009.
    [West2001] A. Westfeld, “F5----A Steganographic Algorithm: High Capacity Despite Better Steganalysis,” Int’l Workshop on Information Hiding, Berlin, Vol. 2137, 289 - 302, 2001.
    [Web01] http://en.wikipedia.org/wiki/Steganography, last modified on 13 April 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE