簡易檢索 / 詳目顯示

研究生: 陳智豪
Chih-Hao Chen
論文名稱: 高效率質子交換式波導於週期性反轉鈮酸鋰的製程研究
High Efficiency APE PPLN Waveguide
指導教授: 黃衍介老師
Yen-Chieh Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 42
中文關鍵詞: 鈮酸鋰波導週期轉換
外文關鍵詞: waveguide, LiNbO3, SHG, lithium niobate, second harmonic generation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在非線性積體光學元件中,週期性反轉式鈮酸鋰之光波導在頻率轉換的應用中,是相當多樣的。因此,利用鈮酸鋰優良的非線性特性,在許多雷射及光通訊的元件中,被廣泛應用在可見光、近紅外光、以及遠紅外光之雷射製作上。在本論文中,主要探討光波導在週期性反轉鈮酸鋰的製程研究,在如何製作出高轉換效率且損耗小的波導的製程中,也研究了一些鍍膜的原理以及材料特性的研究。
    我們成功的研究出一種鍍膜方式,對於質子交換式的光波導而言,決定質子交換的通道中,是不允許有凹洞狀的缺陷在整條通道上,而我們選擇的材料是二氧化矽,是一種相當堅硬的電介質材料,濺鍍的方式是不容易形成均勻且緻密的膜質。我們採用了低鍍膜速率的方式,可以成功的鍍出均勻且緻密的膜質,再利用二氧化矽的蝕刻液,成功的製作出沒有缺陷的通道。我們這邊所使用的鍍膜參數為外加150瓦的RF功率,腔體壓力僅2mtorr的低壓下,外加負偏壓50伏特於晶體上,在距離7公分的晶體上鍍膜。對於質子交換的光波導,也減少損耗以及相位匹配的單一性。
    對於質子交換的製程中,我們考慮了幫浦光與倍頻光在光波導的交互作用以及損耗,決定了最佳的質子交換深度以及回火時間。在光學的量測中,我們的晶體具有4公分的準相位匹配結構,在幫浦光強度為16毫瓦下,量測到倍頻光可達2.1毫瓦的高轉換效率,單位強度單位長度平方的轉換效率為32.1%W-1 cm-2 . 而此波導的傳遞損耗為0.4dBcm-1。在此高效率的倍頻光轉化效率之下,我們可以藉由此製程來研發更多的雷射元件,利用光波導的優勢加上鈮酸鋰的非線性特性,未來的發展可望多采多姿。


    Optical waveguides fabricated on the Periodically-Poled LiNbO3 (PPLN) is commonly used for nonlinear devices. There are several methods to do this work by proton-exchange or Metal-in-diffused technologies. This thesis introduces the annealing liquid-phase proton-exchange (APE) technology to fabricate optical waveguide devices, and has higher conversion efficiency for second harmonic generation (SHG).
    The proton-exchange technology has been developed for many years, and many kinds of exchange source have been used. Benzoic acid is most used for proton sources. We completely setup a recipe of coating SiO2 thin film by the sputter and the APE technology. The thin film quality will affect the phase-matching condition and the conversion efficiency. We will invite a new method of coating the denser and more uniform film and optimize APE conditions to get a higher SHG conversion efficiency.
    The APE PPLN waveguides with 40 mm-long quasi-phase matching (QPM) section will obtain a normalized conversion efficiency about 31 % W-1 cm-2 with the pumping power of 21mW. The crystalline phase is changed to a □ phase. The propagation loss at 1550nm is about 0.4dB/cm. The higher conversion efficiency will be very useful for many waveguide applications.

    Table of Contents Abstract I 中文摘要 II 致謝 III Table of Contents IV List of Figures VI List of Tables VII Chapter 1: Introduction 1 1.1 Motivation 1 1.2 Guide-wave Nonlinear Optics 2 1.3 Dissertation Overview 4 Chapter 2: Theory of Guided-Wave Nonlinear Optics on APE PPLN Waveguide 6 2.1 Introduction 6 2.2 Second Harmonic Generation Theory in Optical Waveguide 6 2.2.1 Second Order Nonlinear Optics for Guiding Wave 6 2.2.2 Quasi-phase-matching 8 2.2.3 Tuning and Tolerance 9 2.3 Summary 10 Chapter 3: Design and Fabrication of Annealed Proton Exchange PPLN Channel Waveguide 12 3.1 Introduction 12 3.2 Overview of APE PPLN Channel Waveguide 12 3.3 Fabrication and Design of APE-PPLN Waveguide Fabrication 15 3.3.1 Design and Fabrication of Periodic Poled Lithium Niobate 15 3.3.2 Channel Pattern Fabrication 17 3.3.2.1 Sputtering system 17 3.3.2.2 Ion Plating 17 3.3.2.3 SiO2 thin film deposition 18 3.3.3 APE-PPLN Channel Waveguide 22 3.4 Summary 25 Chapter 4: Optical Analysis of Second Harmonic Generation Channel Waveguide 28 4.1Optical Measurement Setup 28 4.2 Non-Optimized Channel Quality and Optical Measurement 30 4.2.1 The Primitive APE Channel Waveguide 30 4.2.2 The APE Channel Waveguide with Channel Amelioration 33 4.3 Optimized Channel Waveguide Measurement 33 4.4 Channel Width Analysis 35 4.5 Summary 36 Chapter 5: Conclusion and Future Work 38 4.1 Conclusion 38 4.2 Future works 39 Appendix A. Sum Frequency Generation 40 Appendix B. Double-Lift-off Process 41

    Reference for Chapter 1:

    [1] Richard Syms and John Cozens, Optical guiding waves and devices, McGraw-Hill, 1992.
    [2] G. P. Agrawal, Fiber-Optic Communication System, John Wiley & Sons, 1997.
    [3] Kawanishi S, et al, “All-optical modulation and time-division-multiplexing of 100Gbit/s signal using quasi-phase matched mixing in LiNbO3 waveguides,” Electron. Lett. 36, 1568-1569, 2000.
    [4] K. R. Parameswaran, M. Fujimura, M. H. Chou, et al, “Low-power all-optical gate based on sum frequency mixing in APE waveguides,” IEEE Photonic Tech. Lett. 12, 654-656, 2000.
    [5] D. Hofmann, G. Schreiber, C. Haase, H. Herrmann, W. Grundkotter, et al, “Quasi-phase-matched difference-frequency generation in periodically poled Ti:LiNbO3 channel waveguide,” Opt. Lett. 24(13), 896-898, 1999.
    [6] L. E. Myers, R. C. Eckardt, et al., ”Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12(11), 2102-2116, 1995.
    [7] Dieter H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congrunent lithium niobate,” Opt. Lett.22(20),1553-1555, 1997.
    [8] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generations of optical harmonics,” Phys. Rev. Lett. 7, 118-119, 1961.
    ===========================================================
    Reference for Chapter 2:

    [1] Martin M. Fejer, G. A. Magel, Dieter H. Jundt, and Robert L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quan. Electron. 28 (11), 1992.
    [2] Krishnan R. Parameswaran, Roger K. Route, Jonathan R. Kurz, Rostislav V. Roussev, and Martin M. Fejer, ”Highly efficiency second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27 (3), 2002.
    [3] L. E. Myers, ”Quasi-phase-matched optical parametric oscillators in bulk periodically poled lithium niobate,” Ph.D. Dissertation, Department of Electrical engineering, Stanford University, Stanford, CA, 1995.
    [4] Dieter H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553-1555, 1997.
    ===========================================================
    Reference for Chapter 3:

    [1] Vittorio M. N.Passaro,”LiNbO3 Optical Waveguides Formed in a New Proton Source,”J. Light. Tech., 20(1), 71-77, 2002.
    [2] L. Chanvillard, P. Aschieri, and P. Baldi,”Soft proton exchange on periodically poled LiNbO3 : A simple waveguide fabrication process for highly efficient nonlinear interactions, ” Appl. Phy. 76(9), 1089-1091, 2000.
    [3] Yuri N. Korkishko, “LiNbO3 Optical Waveguide Fabrication by High-Temperature Proton Exchange,” J. Light. Tech. 18(4), 562-568, 2000.
    [4] D.H. Tsou, M.H. Chou, P. Santhanaraghavan, Y.H. Chen, and Y.C. Haung,”Structure of optical characterization of vapor-phase proton exchanged lithium niobate waveguides,” Mater. Chem. and Phys. 78,474-479,2002
    [5] L. Rams and J. M. Cabrera,” Preparation of proton-exchange LiNbO3 waveguides in benzoic acid vapor,” J. Opt. Soc. Am. B 16(3),401-406,1999.
    [6] Yu. N. Korkishko, V. A. Fedorov, and T. M. Morozova, ”Reverse proton exchange for buried waveguides in LiNbO3,”J.Opt.Am.B 15(7),1838-1842,1998.
    [7] Ming-Hsien Chou,”Optical frequency mixers using three-wave mixing for optical fiber communication,” Ph.D. Dissertation, Department of Applied Physics, Stanford University, Stanford, CA(1999).
    [8] Sandeep T., Vahra and Alan R. Mickelson,”Diffusion characteristics and `waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides,” J. Appl. Phy. 66(11), 5161-5174, 1989
    [9] Yu. N. Korkishko and V. A. Fedorov, “Structure Phase Diagram of HxLi1-xNbO3 Waveguides: The Correlation Between Optical and Structure Properties,” IEEE J. Sele. Top. Quantum Electronics 2,187-196, 1996.
    [10] Yu. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras, “Relationships between structural and optical properties of proton- exchanged waveguides on Z-cut lithium niobate,” Appl. Opt. 35(36),7056-7060,1996.
    [11] A. Galvanauskas, K. K. Wong, K. El Hadi, M. Hofer, M. E. Fermann, D. Hater, M. H. Chou, M. M. Fejer, “Amplification in 1.2-1.7 mm communication window using OPA in PPLN waveguides,” Electron. Lett. 35, 731-733, 1999.
    [12] A. Alcazar de V., J. Rams, J.M. Cabrera, and F. Agullo-Lopez, “Light-induced damage mechanism in □-phase proton-exchanged LiNbO3 waveguides,” Appl. Phys. B 68, 989-993, 1999.
    [13] Kin Seng Chiang, “Construction of Refractive-Index Profiles of Planar Dielectric Waveguides from the Distribution of Effective Indexes,” J. Light. Tech. 3(2), 1985.
    [14] N. A. G. Ahmed, “Ion Plating Technology- Developments and Applications,” John Wiley & Sons, 1987.
    [15] James D. Plummer, Michanel D. Deal, and Peter B. Griffin, “Silicon VLSI Technology,” Prentice Hall, Inc., 2000.
    [16] Wei-Yung Hsu, Craig S. Willand, Venkatraman Gopalan, and Mool C. Gupta, “Effect of proton exchange on the nonlinear optical properties of LiNbO3 and LiTaO3,” Appl. Phys. Lett. 61 (19), 2263-2265, 1992.
    [17] Chi-Yen Shen, Shuming Tong Wang and Ren-Change Chu, ”The effect of Hydrogen on Refractive Index Profiles of Annealed Proton-Exchange Z-cut LiNbO3,” Jpn. J. Appl. Phys. 36, 6781-6784, 1997.
    [18] M. L. Bortz, “Annealed proton-exchanged LiNbO3 waveguide,” Opt. Lett. 16, 1844-1846, 1991.
    [19] Michael L. Bortz, “Quasi-Phasematched Optical Frequency Conversion in Lithium Niobate Waveguides,” Ph.D. Dissertation, Department of Applied Physics, Stanford University, Stanford, CA(1994).
    ===========================================================
    Reference for Chapter 4:

    [1] Ming-Hsien Chou,”Optical frequency mixers using three-wave mixing for optical fiber communication,” Ph.D. Dissertation, Department of Applied Physics, Stanford University, Stanford, CA(1999).
    [2] Michael L. Bortz, “Quasi-Phasematched Optical Frequency Conversion in Lithium Niobate Waveguides,” Ph.D. Dissertation, Department of Applied Physics, Stanford University, Stanford, CA(1994).
    [3] Sten Helmfrid, Gunnar Arvidsson, and Jonas Webjorn, “Influence of various imperfections on the conversion efficiency of second-harmonic generation in quasi-phase-matching lithium niobate waveguides,” J. Opt. Soc. Am. B 10(2), 222-229, 1992.
    [4] R. Regener and W. Sohler, “Loss in Low-Finesse Ti : LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36, 143-147, 1985.
    [5] Takumi Fujiwara, Xiaofan Cao, Ramakant Srivastava, and Ramu V. Ramaswamy, “Photorefractive effect in annealed proton-exchange LiNbO3 waveguides,” Appl. Phys. Lett. 61 (7), 743-745, 1992.
    [6] Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77 (16), 2494-2497 , 2000.
    [7] A. Alcazar de V., J. Rams, J.M. Cabrera, and F. Agullo-Lopez, “Light-induced damage mechanism in □-phase proton-exchanged LiNbO3 waveguides,” Appl. Phys. B 68, 989-993, 1999.
    ===========================================================
    Reference for chapter 5:

    [1] L.E. Myers, ”Quasi-phasematched optical parametric oscillators in bulk periodically poled lithium niobate,” Ph. D. dissertation, Department of Electrical Engineering, Stanford University, Stanford, CA(1995).
    [2] 李正中, “薄膜光學與鍍膜技術,” 藝軒出版社, 1998.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE