研究生: |
陳智豪 Chih-Hao Chen |
---|---|
論文名稱: |
高效率質子交換式波導於週期性反轉鈮酸鋰的製程研究 High Efficiency APE PPLN Waveguide |
指導教授: |
黃衍介老師
Yen-Chieh Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 英文 |
論文頁數: | 42 |
中文關鍵詞: | 鈮酸鋰 、波導 、週期轉換 |
外文關鍵詞: | waveguide, LiNbO3, SHG, lithium niobate, second harmonic generation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在非線性積體光學元件中,週期性反轉式鈮酸鋰之光波導在頻率轉換的應用中,是相當多樣的。因此,利用鈮酸鋰優良的非線性特性,在許多雷射及光通訊的元件中,被廣泛應用在可見光、近紅外光、以及遠紅外光之雷射製作上。在本論文中,主要探討光波導在週期性反轉鈮酸鋰的製程研究,在如何製作出高轉換效率且損耗小的波導的製程中,也研究了一些鍍膜的原理以及材料特性的研究。
我們成功的研究出一種鍍膜方式,對於質子交換式的光波導而言,決定質子交換的通道中,是不允許有凹洞狀的缺陷在整條通道上,而我們選擇的材料是二氧化矽,是一種相當堅硬的電介質材料,濺鍍的方式是不容易形成均勻且緻密的膜質。我們採用了低鍍膜速率的方式,可以成功的鍍出均勻且緻密的膜質,再利用二氧化矽的蝕刻液,成功的製作出沒有缺陷的通道。我們這邊所使用的鍍膜參數為外加150瓦的RF功率,腔體壓力僅2mtorr的低壓下,外加負偏壓50伏特於晶體上,在距離7公分的晶體上鍍膜。對於質子交換的光波導,也減少損耗以及相位匹配的單一性。
對於質子交換的製程中,我們考慮了幫浦光與倍頻光在光波導的交互作用以及損耗,決定了最佳的質子交換深度以及回火時間。在光學的量測中,我們的晶體具有4公分的準相位匹配結構,在幫浦光強度為16毫瓦下,量測到倍頻光可達2.1毫瓦的高轉換效率,單位強度單位長度平方的轉換效率為32.1%W-1 cm-2 . 而此波導的傳遞損耗為0.4dBcm-1。在此高效率的倍頻光轉化效率之下,我們可以藉由此製程來研發更多的雷射元件,利用光波導的優勢加上鈮酸鋰的非線性特性,未來的發展可望多采多姿。
Optical waveguides fabricated on the Periodically-Poled LiNbO3 (PPLN) is commonly used for nonlinear devices. There are several methods to do this work by proton-exchange or Metal-in-diffused technologies. This thesis introduces the annealing liquid-phase proton-exchange (APE) technology to fabricate optical waveguide devices, and has higher conversion efficiency for second harmonic generation (SHG).
The proton-exchange technology has been developed for many years, and many kinds of exchange source have been used. Benzoic acid is most used for proton sources. We completely setup a recipe of coating SiO2 thin film by the sputter and the APE technology. The thin film quality will affect the phase-matching condition and the conversion efficiency. We will invite a new method of coating the denser and more uniform film and optimize APE conditions to get a higher SHG conversion efficiency.
The APE PPLN waveguides with 40 mm-long quasi-phase matching (QPM) section will obtain a normalized conversion efficiency about 31 % W-1 cm-2 with the pumping power of 21mW. The crystalline phase is changed to a □ phase. The propagation loss at 1550nm is about 0.4dB/cm. The higher conversion efficiency will be very useful for many waveguide applications.
Reference for Chapter 1:
[1] Richard Syms and John Cozens, Optical guiding waves and devices, McGraw-Hill, 1992.
[2] G. P. Agrawal, Fiber-Optic Communication System, John Wiley & Sons, 1997.
[3] Kawanishi S, et al, “All-optical modulation and time-division-multiplexing of 100Gbit/s signal using quasi-phase matched mixing in LiNbO3 waveguides,” Electron. Lett. 36, 1568-1569, 2000.
[4] K. R. Parameswaran, M. Fujimura, M. H. Chou, et al, “Low-power all-optical gate based on sum frequency mixing in APE waveguides,” IEEE Photonic Tech. Lett. 12, 654-656, 2000.
[5] D. Hofmann, G. Schreiber, C. Haase, H. Herrmann, W. Grundkotter, et al, “Quasi-phase-matched difference-frequency generation in periodically poled Ti:LiNbO3 channel waveguide,” Opt. Lett. 24(13), 896-898, 1999.
[6] L. E. Myers, R. C. Eckardt, et al., ”Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12(11), 2102-2116, 1995.
[7] Dieter H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congrunent lithium niobate,” Opt. Lett.22(20),1553-1555, 1997.
[8] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generations of optical harmonics,” Phys. Rev. Lett. 7, 118-119, 1961.
===========================================================
Reference for Chapter 2:
[1] Martin M. Fejer, G. A. Magel, Dieter H. Jundt, and Robert L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quan. Electron. 28 (11), 1992.
[2] Krishnan R. Parameswaran, Roger K. Route, Jonathan R. Kurz, Rostislav V. Roussev, and Martin M. Fejer, ”Highly efficiency second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27 (3), 2002.
[3] L. E. Myers, ”Quasi-phase-matched optical parametric oscillators in bulk periodically poled lithium niobate,” Ph.D. Dissertation, Department of Electrical engineering, Stanford University, Stanford, CA, 1995.
[4] Dieter H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553-1555, 1997.
===========================================================
Reference for Chapter 3:
[1] Vittorio M. N.Passaro,”LiNbO3 Optical Waveguides Formed in a New Proton Source,”J. Light. Tech., 20(1), 71-77, 2002.
[2] L. Chanvillard, P. Aschieri, and P. Baldi,”Soft proton exchange on periodically poled LiNbO3 : A simple waveguide fabrication process for highly efficient nonlinear interactions, ” Appl. Phy. 76(9), 1089-1091, 2000.
[3] Yuri N. Korkishko, “LiNbO3 Optical Waveguide Fabrication by High-Temperature Proton Exchange,” J. Light. Tech. 18(4), 562-568, 2000.
[4] D.H. Tsou, M.H. Chou, P. Santhanaraghavan, Y.H. Chen, and Y.C. Haung,”Structure of optical characterization of vapor-phase proton exchanged lithium niobate waveguides,” Mater. Chem. and Phys. 78,474-479,2002
[5] L. Rams and J. M. Cabrera,” Preparation of proton-exchange LiNbO3 waveguides in benzoic acid vapor,” J. Opt. Soc. Am. B 16(3),401-406,1999.
[6] Yu. N. Korkishko, V. A. Fedorov, and T. M. Morozova, ”Reverse proton exchange for buried waveguides in LiNbO3,”J.Opt.Am.B 15(7),1838-1842,1998.
[7] Ming-Hsien Chou,”Optical frequency mixers using three-wave mixing for optical fiber communication,” Ph.D. Dissertation, Department of Applied Physics, Stanford University, Stanford, CA(1999).
[8] Sandeep T., Vahra and Alan R. Mickelson,”Diffusion characteristics and `waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides,” J. Appl. Phy. 66(11), 5161-5174, 1989
[9] Yu. N. Korkishko and V. A. Fedorov, “Structure Phase Diagram of HxLi1-xNbO3 Waveguides: The Correlation Between Optical and Structure Properties,” IEEE J. Sele. Top. Quantum Electronics 2,187-196, 1996.
[10] Yu. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras, “Relationships between structural and optical properties of proton- exchanged waveguides on Z-cut lithium niobate,” Appl. Opt. 35(36),7056-7060,1996.
[11] A. Galvanauskas, K. K. Wong, K. El Hadi, M. Hofer, M. E. Fermann, D. Hater, M. H. Chou, M. M. Fejer, “Amplification in 1.2-1.7 mm communication window using OPA in PPLN waveguides,” Electron. Lett. 35, 731-733, 1999.
[12] A. Alcazar de V., J. Rams, J.M. Cabrera, and F. Agullo-Lopez, “Light-induced damage mechanism in □-phase proton-exchanged LiNbO3 waveguides,” Appl. Phys. B 68, 989-993, 1999.
[13] Kin Seng Chiang, “Construction of Refractive-Index Profiles of Planar Dielectric Waveguides from the Distribution of Effective Indexes,” J. Light. Tech. 3(2), 1985.
[14] N. A. G. Ahmed, “Ion Plating Technology- Developments and Applications,” John Wiley & Sons, 1987.
[15] James D. Plummer, Michanel D. Deal, and Peter B. Griffin, “Silicon VLSI Technology,” Prentice Hall, Inc., 2000.
[16] Wei-Yung Hsu, Craig S. Willand, Venkatraman Gopalan, and Mool C. Gupta, “Effect of proton exchange on the nonlinear optical properties of LiNbO3 and LiTaO3,” Appl. Phys. Lett. 61 (19), 2263-2265, 1992.
[17] Chi-Yen Shen, Shuming Tong Wang and Ren-Change Chu, ”The effect of Hydrogen on Refractive Index Profiles of Annealed Proton-Exchange Z-cut LiNbO3,” Jpn. J. Appl. Phys. 36, 6781-6784, 1997.
[18] M. L. Bortz, “Annealed proton-exchanged LiNbO3 waveguide,” Opt. Lett. 16, 1844-1846, 1991.
[19] Michael L. Bortz, “Quasi-Phasematched Optical Frequency Conversion in Lithium Niobate Waveguides,” Ph.D. Dissertation, Department of Applied Physics, Stanford University, Stanford, CA(1994).
===========================================================
Reference for Chapter 4:
[1] Ming-Hsien Chou,”Optical frequency mixers using three-wave mixing for optical fiber communication,” Ph.D. Dissertation, Department of Applied Physics, Stanford University, Stanford, CA(1999).
[2] Michael L. Bortz, “Quasi-Phasematched Optical Frequency Conversion in Lithium Niobate Waveguides,” Ph.D. Dissertation, Department of Applied Physics, Stanford University, Stanford, CA(1994).
[3] Sten Helmfrid, Gunnar Arvidsson, and Jonas Webjorn, “Influence of various imperfections on the conversion efficiency of second-harmonic generation in quasi-phase-matching lithium niobate waveguides,” J. Opt. Soc. Am. B 10(2), 222-229, 1992.
[4] R. Regener and W. Sohler, “Loss in Low-Finesse Ti : LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36, 143-147, 1985.
[5] Takumi Fujiwara, Xiaofan Cao, Ramakant Srivastava, and Ramu V. Ramaswamy, “Photorefractive effect in annealed proton-exchange LiNbO3 waveguides,” Appl. Phys. Lett. 61 (7), 743-745, 1992.
[6] Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77 (16), 2494-2497 , 2000.
[7] A. Alcazar de V., J. Rams, J.M. Cabrera, and F. Agullo-Lopez, “Light-induced damage mechanism in □-phase proton-exchanged LiNbO3 waveguides,” Appl. Phys. B 68, 989-993, 1999.
===========================================================
Reference for chapter 5:
[1] L.E. Myers, ”Quasi-phasematched optical parametric oscillators in bulk periodically poled lithium niobate,” Ph. D. dissertation, Department of Electrical Engineering, Stanford University, Stanford, CA(1995).
[2] 李正中, “薄膜光學與鍍膜技術,” 藝軒出版社, 1998.