研究生: |
許育銘 Hsu, Yu-Ming |
---|---|
論文名稱: |
具有內切球的骨骼多面體 Circumscriptible Polyhedron Associated with the Steiner Porism on Sphere |
指導教授: |
全任重
Chuan, Jen-Chung 潘戍衍 Pan, Shu-Yen |
口試委員: |
李華倫
Li, Hua-Lun 李明恭 Lee, Ming-Gong |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 36 |
中文關鍵詞: | 骨骼多面體 |
外文關鍵詞: | Circumscriptible Polyhedron |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此篇論文,我們想了解:如果在平面上給定兩個圓,我們找到不同的兩組個數相同的圓圈相切於這兩個圓,我們想了解,這樣的兩組圓圈是不是會有什麼關係?一開始我們先介紹在平面上的Steiner Porism,然後利用反演將它們延伸到球面上的狀況,我們知道:如果有一個多面體,它可以找到一顆球,使得球與它的邊都相切,這些在球面上的圓圈可以看成是那個多面體與球的交集,我們想要了解在球面的Steiner Porism長什麼樣子?一開始我們先介紹最特殊的圓圈大小相同的狀況,然後再利用反演介紹共軸的狀況,再利用反演介紹不平行的狀況,而在球面上的兩個不相交不平行的圓圈可以利用反演將其反演成共軸的兩個圓圈,所以在球面上的狀況我們已經幾乎討論完成了。
In this thesis, we would like to discuss Steiner Porism which describe characteristics of circles are tangent to two circles simultaneously. In the beginning, we consider the situations and characters on plane. and use inversion to extend over 3-dimensional space. On the sphere, circles are regarded as the intersection of the circumscriptible polyhedron and sphere. we are trying to return these circumscriptible polyhedron. There is not every polyhedron exists dual polyhedron, nevertheless, it can be constructed by particular methods.We make the standard type of Steiner Porism on sphere further convert to symmetrical distortion. Each moment of symmetric distortion is a coaxial case of Steiner Porism when it rotates around the z-axis. Finally, we try to construct asymmetrical animation that associated with generalized Steiner Porism. We emphasized the phenomenon in the patterns rather than a complicated proof. We use Cabri 3D to do the patterns.
[1] Bao-Ru,Chen, Reye's Conguration, Master's Thesis of National Tsing Hua
University, 2010
[2] Chun-Yen,Huang, Patterns of Orthogonal Circles on Sphere Based on Dual
Polyhedrons, Master's Thesis of National Tsing Hua University, 2016
[3] Johnson, R. A., Modern Geometry: An Elementary Treatise on the Geometry
of the Triangle and the Circle.,Boston,MA: Houghton Miin
[4] Lawrence, J. D., "Inversion." x2.3 in A Catalog of Special Plane Curves.,
New York: Dover,1972.
[5] Li-Juan Hong, Steiner Porism on Sphere, Master's Thesis of National Center
University, 2010
[6] Weisstein, Eric W., Steiner's Porism, MathWorld
[7] Weisstein, Eric W., Inverse Curve, MathWorld
[8] Welke, S., Inversion of Elementary Algebraic Curves with Respect to a Circle, Mathematica Educ. Res. 4, 16-22, 1995.
[9] Wikipedia, Category:Inversive geometry, en.wikipedia.org
[10] Wikipedia, Steiner chain, en.wikipedia.org
[11] Yates, R. C., "Inversion." A Handbook on Curves and Their Properties, Ann
Arbor, MI: J. W. Edwards,1952.
[12] Hsien-Yu Juan, 卡塔蘭多面體的動態幾何作圖法, Master's Thesis of National Center University, 2010