研究生: |
陳宗佑 Chen, Tsung-Yu |
---|---|
論文名稱: |
手性磁效應動力學 Dynamical Chiral Magnetic Effect |
指導教授: |
牟中瑜
Mou, Chung-Yu |
口試委員: |
仲崇厚
Chung, Chung-Hou 張明哲 Chang, Ming-Che |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 57 |
中文關鍵詞: | 手性磁效應 、Weyl半金屬 、Floquet理論 |
外文關鍵詞: | Chiral Magnetic Effect, Weyl semimetal, Floquet Theory |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Weyl 半金屬的模型可以被預測在有自旋軌道耦合的系統中產生在。我們目的是在凝態系統中尋找高能 Weyl 理論中的手性磁效應(Chiral Magnetic Effect)。其中要求Weyl 半金屬中兩個Weyl點有能量差。那在凝態系統中有效尋找有能量差的Weyl 點的一種方法便是利用非平衡系統。在本篇文章中我們利用前人建立的Weyl 半金屬模型,並由Floquet 理論引入外加場,來在時間週期上驅動Weyl 半金屬產生有能量差的Weyl 點。但利用Floquet 理論所帶來的影響是會持續加熱系統,因此額外我們也引入冷庫去汲取熱能。在以上的系統設置完成後我們應用外加磁場,並看出非零的電流與磁場間平行的關係,以及電流-電流響應。因此我們提供了一個簡明的系統來實現手性磁效應。
The chiral magnetic effect (CME) has been proposed to exist for a condensed matter system with two Weyl nodes separated in different energies. In the condensed matter systems with spin-orbit coupling that has time-reversal symmetry and the needed Weyl nodes, it is realized that the static CME can not exist and the key factor to realize it is to create a non-equilibrium situation with Weyl nodes. We establish a non-equilibrium electronic systems with Weyl nodes by resorting to a time-periodic driven field on a Weyl semi-metal. The driven field induces band folding creates an effective Floquet Hamiltonian. Under appropriate condition, we show that the effective Floquet Hamiltonian gives rise a band structure with Weyl cones. The driven field plays both roles of modifying the band structure but at the same it makes the system non-equilibrium. As the the driven field pumps energy into the system, we couple a reservoir to extract energy out so that the electronic system can be maintained at some stationary state. We apply the Kelydsh formalism to calculate expectation value of current and the linear response of the current under magnetic field. The CME current in this system is verified to be non-vanishing. Our work thus establishes the existence of dynamical chiral magnetic field in Floquet Hamiltonian with Weyl nodes.
References
[1]L. Fu, C. L. Kane, and E. J. Mele, “Topological Insulators in Three Dimensions,”vol. 106803, no. March, pp. 1–4, 2007.
[2]N. Armitage, E. Mele, and A. Vishwanath, “Weyl and dirac semimetals in threedimensional solids,” Reviews of Modern Physics, vol. 90, no. 1, p. 015001, 2018.
[3]K. Fukushima, D. E. Kharzeev, and H. J. Warringa, “Chiral magnetic effect,” PhysicalReview D, vol. 78, no. 7, p. 074033, 2008.
[4]Y. Chen, S. Wu, and A. Burkov, “Axion response in weyl semimetals,” Physical ReviewB, vol. 88, no. 12, p. 125105, 2013.[5]A.A.BurkovandL.Balents,“Weylsemimetalinatopologicalinsulatormultilayer,”Phys.Rev. Lett., vol. 107, p. 127205, Sep 2011.
[6]X.L. Qi, Y.S. Wu, and S.C. Zhang, “Topological quantization of the spin hall effectin twodimensional paramagnetic semiconductors,” Physical Review B, vol. 74, no. 8,p. 085308, 2006.
[7]K.Y. Yang, Y.M. Lu, and Y. Ran, “Quantum hall effects in a weyl semimetal: Possibleapplication in pyrochlore iridates,” Physical Review B, vol. 84, no. 7, p. 075129, 2011.
[8]X. Wan, A. M. Turner, A.Vishwanath, and S. Y. Savrasov, “Topological semimetal andfermiarcsurfacestatesintheelectronicstructureofpyrochloreiridates,”PhysicalReviewB, vol. 83, no. 20, p. 205101, 2011.
[9]S.M.Huang,S.Y.Xu,I.Belopolski,C.C.Lee,G.Chang,B.Wang,N.Alidoust,G.Bian,M. Neupane, C. Zhang, et al., “A weyl fermion semimetal with surface fermi arcs in thetransition metal monopnictide taas class,” Nature communications, vol. 6, no. 1, pp. 1–6,2015.
[10]B. Lv, H. Weng, B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. Huang, L. Zhao,G. Chen, et al., “Experimental discovery of weyl semimetal taas,” Physical Review X,vol. 5, no. 3, p. 031013, 2015.[11]S.Y.Xu,I.Belopolski,N.Alidoust,M.Neupane,G.Bian,C.Zhang,R.Sankar,G.Chang,Z. Yuan, C.C. Lee, et al., “Discovery of a weyl fermion semimetal and topological fermiarcs,” Science, vol. 349, no. 6248, pp. 613–617, 2015.
[12]H. Weng, C. Fang, Z. Fang, A. Bernevig, and X. Dai, “Weyl semimetal phase in noncentrosymmetric transitionmetal monophosphides,” Bulletin of the American PhysicalSociety, vol. 2016, 2015.55
[13]X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng,Z. Fang, X. Dai, and G. Chen, “Observation of the chiralanomalyinduced negative magnetoresistance in 3d weyl semimetal taas,” Physical Review D, p. 031023, 2015.[14]Q.Li,D.E.Kharzeev,C.Zhang,Y.Huang,I.Pletikosić,A.Fedorov,R.Zhong,J.Schneeloch,G.Gu,andT.Valla,“Chiralmagneticeffectinzrte5,”NaturePhysics,vol.12,no.6,pp. 550–554, 2016.
[15]D. E. Kharzeev, “The chiral magnetic effect and anomalyinduced transport,” Progress inParticle and Nuclear Physics, vol. 75, pp. 133–151, 2014.
[16]M.C.Chang andM.F.Yang, “Chiral magnetic effectin atwoband lattice modelof weylsemimetal,” Physical Review B, vol. 91, no. 11, p. 115203, 2015.
[17]G. Floquet, “Sur les équations différentielles linéaires à coefficients périodiques,” in Annales scientifiques de l’École normale supérieure, vol. 12, pp. 47–88, 1883.
[18]A.GómezLeónandG.Platero,“Floquetblochtheoryandtopologyinperiodicallydrivenlattices,” Physical review letters, vol. 110, no. 20, p. 200403, 2013.
[19]M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte,M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature, vol. 496,no. 7444, pp. 196–200, 2013.
[20]T. Oka and H. Aoki, “Photovoltaic hall effect in graphene,” Physical Review B, vol. 79,no. 8, p. 081406, 2009.
[21]A. Kumar and B. Seradjeh, “PHYSICAL REVIEW B 101 , 174314 ( 2020 ) Linear responsetheoryandopticalconductivityofFloquettopologicalinsulators,”PhysicalReviewB, vol. 101, no. 17, p. 174314, 2020.
[22]T. U. Braunschweig and M. Physik, “Floquet Engineering Topological ManyBody Localized Systems,” Physical Review Letters, vol. 124, no. 19, p. 190601, 2020.
[23]M. S. Rudner and N. H. Lindner, “Floquet topological insulators: from bandstructure engineering to novel nonequilibrium quantum phenomena,” arXiv preprintarXiv:1909.02008, 2019.
[24]J. Rovny, R. L. Blum, and S. E. Barrett, “Observation of discretetimecrystal signatures in an ordered dipolar manybody system,” Physical review letters, vol. 120, no. 18,p. 180603, 2018.
[25]J. Zhang, P. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I.D. Potirniche, A.C.Potter, A.Vishwanath,etal., “Observationofadiscretetimecrystal,” Nature,vol. 543, no. 7644, pp. 217–220, 2017.
[26]A. Syrwid, J. Zakrzewski, and K. Sacha, “Time crystal behavior of excited eigenstates,”Physical review letters, vol. 119, no. 25, p. 250602, 2017.
[27]A. G. Grushin, Á. GómezLeón, and T. Neupert, “Floquet fractional chern insulators,”Physical review letters, vol. 112, no. 15, p. 156801, 2014.56
[28]Y. T. Katan and D. Podolsky, “Modulated floquet topological insulators,” Physical reviewletters, vol. 110, no. 1, p. 016802, 2013.
[29]A. Pal and D. A. Huse, “Manybody localization phase transition,” Physical Review B,vol. 82, no. 17, p. 174411, 2010.[30]J.y. Choi, S. Hild, J. Zeiher, P. Schauß, A. RubioAbadal, T. Yefsah, V. Khemani, D. A.Huse, I. Bloch, and C. Gross, “Exploring the manybody localization transition in twodimensions,” Science, vol. 352, no. 6293, pp. 1547–1552, 2016.
[31]J. H. Bardarson, F. Pollmann, and J. E. Moore, “Unbounded growth of entanglement inmodels of manybody localization,” Physical review letters, vol. 109, no. 1, p. 017202,2012.
[32]K.I.Seetharam,C.E.Bardyn, N.H.Lindner,M.S.Rudner,andG.Refael, “Steadystatesof interacting floquet insulators,” Physical Review B, vol. 99, no. 1, p. 014307, 2019.
[33]O. R. Diermann, H. Frerichs, and M. Holthaus, “Periodic thermodynamics of the parametrically driven harmonic oscillator,” Physical Review E, vol. 100, no. 1, p. 012102,2019.[34]I.Esin,M.S.Rudner,G.Refael,andN.H.Lindner,“Quantizedtransportandsteadystatesof floquet topological insulators,” Physical Review B, vol. 97, no. 24, p. 245401, 2018.[35]M. Genske and A. Rosch, “Floquetboltzmann equation for periodically driven fermi systems,” Physical Review A, vol. 92, no. 6, p. 062108, 2015.
[36]M. Srednicki, Quantum field theory. Cambridge University Press, 2007.
[37]H. B. Nielsen and M. Ninomiya, “Nogo theorum for regularizing chiral fermions,” tech.rep., Science Research Council, 1981.[38]X.L. Qi, E. Witten, and S.C. Zhang, “Axion topological field theory of topological superconductors,” Physical Review B, vol. 87, no. 13, p. 134519, 2013.
[39]K. Fujikawa, K. Fujikawa, H. Suzuki, et al., Path integrals and quantum anomalies.No. 122, Oxford University Press on Demand, 2004.
[40]L.V.Keldyshetal., “Diagramtechniquefornonequilibriumprocesses,” Sov.Phys.JETP,vol. 20, no. 4, pp. 1018–1026, 1965.
[41]M. S. Green, “Markoff random processes and the statistical mechanics of timedependentphenomena.ii.irreversibleprocessesinfluids,” TheJournalofChemicalPhysics, vol.22,no. 3, pp. 398–413, 1954.[42]P. Coleman, Introduction to manybody physics. Cambridge University Press, 2015.
[43]D.J.Thouless, “Quantizationofparticletransport,” Phys.Rev.B,vol.27, pp.6083–6087,May 1983