簡易檢索 / 詳目顯示

研究生: 廖妍婷
Liao, Yen Ting
論文名稱: 利用介電質平板式常壓電漿改質聚對苯二甲酸乙二醇酯和乙烯-四氟化乙烯聚酯物以提升其表面生物相容性
Enhancing the Biocompatibility of PET and ETFE via Atmospheric Dielectric Barrier Discharge Surface Modification
指導教授: 杜正恭
Duh, Jenq Gong
口試委員: 陳韻晶
Chen, Yun Ching
萬德輝
Wan, De Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 134
中文關鍵詞: 介電質式常壓電漿表面改質生物相容性
外文關鍵詞: Atmospheric Dielectric Barrier Discharge, Surface Modification, Biocompatibility
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,「材料改質技術」係材料科技發展重點之一,其中以生醫材料應用最為蓬勃發展。本研究開發常壓電漿表面改質技術,此技術具有非破壞性方式,可降低製造成本,減少製程毒性等優點。故利用不同常壓電漿製程參數進行人工心血管材料(聚對苯二甲酸乙二醇酯和乙烯-四氟化乙烯聚酯物)之表面機能化處理,並探討常壓電漿表面技術對小鼠纖維母細胞培養之影響。
    常壓電漿技術, 使電漿內高能粒子與活性自由基撞擊高分子基材,與表面碳雜質反應生成H2O與CO2等氣體而從表面清除,或將自由基接於物質表面,促使基材表面分子結構斷鍵而形成活化反應。藉由表面新生成之官能基,提升生物材料所需表面特性,並進一步利用電漿接枝技術將特殊官能基之高分子單體接枝於生醫材料表面,如接枝聚乙二醇單體以達到抗沾黏的效果。亦即電漿改質會改變材料表面特性(表面能、表面官能基、表面粗糙度),進而探討改質基材與生物體(細胞)間之交互作用。
    經由氬氣電漿處理,材料表面能提升及表面粗糙度增加,並有效地將氧原子導入材料表面,增加表面親水性,利於細胞貼附。再者,由氬氫混合氣添加氮氣與氧氣產生之電漿,易產生NH2和COOH官能基於材料表面,其中氮氣的添加將有效地導入氮原子於材料表面,進而形成胺基,利於細胞大量地貼附於材料表面。此外,透過電漿表面接枝聚乙二醇官能基於材料表面,因其表面太過親水,不利於細胞之貼附,可應於抗沾黏醫材之使用。本研究成功地開發新穎的常壓電漿技術,改質高分子醫療材料之物理與化學特性,並有效控制細胞貼附之情形,能符合不同醫療材料之特性應用。


    The aim of this study is to enhance the cell attachment on poly(ethylene terephthalate) (PET) and ethylene tetrafluoroethylene (ETFE) by applying atmospheric pressure dielectric electric discharge plasma surface modification. Plasma-modified PET and ETFE show the change in surface energy and also specific functional groups are found to be on the surface via using different working gas. Pure Ar plasma could effectively alter the chemical and physical properties, and especially Ar plasma-treated ETFE shows the large amount of oxygen containing groups on the surface.
    On the other hand, the increment of C-C/C-H bonds on PET makes it more hydrophobic after Ar/H2 plasma treatment. The nitrogen functional groups are introduced on PET and ETFE via Ar/H2/N2 plasma modification. PET and ETFE modified by Ar/H2/O2 plasma would enhance the surface hydrophilicity due to the increased the surface roughness and the incorporation of oxygen functionalities. In addition to pure surface modification, a layer of poly(ethylene glycol) methyl ether methacrylate (PEGMA) is applied onto PET and ETFE prior to Ar/H2/O2 plasma treatment. Surface characterization confirms that C-O bond is increased due to grafting of PEGMA induced by plasma.
    Cell adhesion on plasma-treated PET and ETFE under different treating parameter is evaluated by cell culture of NIH 3T3 fibroblast cells. Ar, Ar/H2/N2, and Ar/H2/O2 plasma-treated PET and ETFE surface improve the cell affinity. The increase of surface wettability, roughness, and amino functional groups would be beneficial to cell adhesion. The cell attachment significantly decreases after plasma PEGMA grafted modification. Therefore, the polymers with any structure can be modified by DBD plasma technique to control the cell response.

    Contents List of Tables III Figure Captions IV Abstract VII Chapter I Introduction 1 1.1 Background 1 1.2 Motivation and Goals of the Thesis 3 1.3 Thesis Overview 5 Chapter II Literature Review 7 2.1 Biomaterials 7 2.2 Surface Modification Methods 13 2.2.1. Wet Chemical Methods 14 2.2.2. Ozone Treatment 15 2.2.3. UV Treatment and Photografting 16 2.2.4. High-Energy Radiation. 17 2.2.5. Plasma Treatment 18 2.3 Review of Plasma Technology 19 2.3.1 Plasma Surface Interactions: General Introduction. 19 2.3.2 Plasma Classifications 26 2.3.3 Atmospheric pressure plasma 28 2.3.4 Atmospheric Pressure Dielectric Barrier Discharge (DBD) 29 2.3.5 Atmospheric pressure plasma for biomedical application 30 Chapter III Experimental Procedure 47 3.1 Sample Preparation 47 3.2 Atmospheric Dielectric Barrier Discharges System 48 3.3 Instrumentation for Surface Property Characterization 49 3.3.1 Contact Angle Measurement for Surface Wettability Analysis 49 3.3.2 Surface Energy Calculation 50 3.3.3 ATR-FTIR for Surface Chemical Bonds Characterization 50 3.3.4 XPS for Surface Chemical Composition 51 3.4.5 SEM for Surface Morphology Observation 51 3.4.6 AFM for Surface Roughness Analysis 52 3.5 Biological Assessment 52 3.5.1 Cell Culture 52 3.5.2 Confocal Microscopy for Cell Attachment Observation 53 3.6 Test Conditions 54 Chapter IV Results and Discussion 60 4.1 Surface characterization of PET and ETFE 60 4.2 Biological test on PET and ETFE 78 Chapter V Conclusion 111 References 113 List of Tables Table 2-1 Uses of Biomaterials 37 Table 2-2 Biomaterials in Organs and system 38 Table 2-3 Polymers and their biomedical applications 39 Table 4-1 The root mean square roughness (RMS) and absolute surface roughness (Ra) of PET before and after plasma treatment 83 Table 4-2 The changes in elemental composition of PET before and after plasma treatment 84 Table 4-3 The de-convolution of carbon and oxygen atomic concentrations of PET before and after plasma treatment 85 Table 4-4 Surface energy and its polar components and dispersive components of PET before and after plasma treatment 86 Table 4-5 The root mean square roughness (RMS) and absolute surface roughness (Ra) of ETFE before and after plasma treatment 87 Table 4-6 The changes in elemental composition of ETFE before and after plasma treatment 88 Table 4-7 The de-convolution of carbon and oxygen atomic concentrations of ETFE before and after plasma treatment 89 Table 4-8 Surface energy and its polar components and dispersive components of ETFE before and after plasma treatment 90 Figure Captions Fig. 2-1 Common polymers used in biomedical application 40 Fig. 2-2 Plasma composition 41 Fig. 2-3 A schematic representation of plasma treatment 42 Fig. 2-4 A schematic representation of plasma post-irradiation grafting 43 Fig. 2-5 A schematic representation of plasma syn-irradiation 44 Fig. 2-6 A schematic representation of plasma polymerization 45 Fig. 2-7 Typical electrode arrangements of DBD configurations 46 Fig. 3-1 The flowchart of experimental procedure 56 Fig. 3-2 Chemical structure of polymers used in this study (a) PET, (b) ETFE, and (c) PEGMA 57 Fig. 3-3 A schematic diagram of atmospheric pressure dielectric barrier discharge 58 Fig. 3-4 The procedure of plasma induced grafting polymerization 59 Fig. 4-1 Surface morphology of PET before and after plasma treatment (a) untreated (b) Ar plasma (c) Ar/H2 plasma (d) Ar/H2/N2 plasma (e) Ar/H2/O2 plasma (f) plasma grafting PEGMA 91 Fig. 4-2 Surface roughness of PET before and after plasma treatment (a) untreated (b) Ar plasma (c) Ar/H2 plasma (d) Ar/H2/N2 plasma (e) Ar/H2/O2 plasma (f) plasma grafting PEGMA 92 Fig. 4-3 Surface morphology of ETFE before and after plasma treatment (a) untreated (b) Ar plasma (c) Ar/H2 plasma (d) Ar/H2/N2 plasma (e) Ar/H2/O2 plasma (f) plasma grafting PEGMA 93 Fig. 4-4 Surface roughness of ETFE before and after plasma treatment (a) untreated (b) Ar plasma (c) Ar/H2 plasma (d) Ar/H2/N2 plasma (e) Ar/H2/O2 plasma (f) plasma grafting PEGMA 94 Fig. 4-5 ATR-FTIR analysis of untreated PET and plasma treated PET 95 Fig. 4-6 ATR-FTIR analysis of untreated PET and PEGMA grafted on PET 96 Fig. 4-7 C1s intensity of PET films before and after plasma treatment (a) untreated (b) Ar plasma (c) Ar/H2 plasma (d) Ar/H2/N2 plasma (e) Ar/H2/O2 plasma (f) plasma grafting PEGMA 97 Fig. 4-8 N1s intensity of pure and plasma treated PET films. (a) untreated (b) Ar/H2/N2 plasma 98 Fig. 4-9 ATR-FTIR analysis of untreated ETFE and plasma treated ETFE 99 Fig. 4-10 ATR-FTIR analysis of untreated ETFE and PEGMA grafted on ETFE 100 Fig. 4-11 C1s intensity of ETFE films before and after plasma treatment (a) untreated (b) Ar plasma (c) Ar/H2 plasma (d) Ar/H2/N2 plasma (e) Ar/H2/O2 plasma (f) plasma grafting PEGMA 101 Fig. 4-12 N1s intensity of pure and plasma treated ETFE films. (a) untreated (b) Ar/H2/N2 plasma 102 Fig. 4-13 Change of water contact angle on PET before and after plasma treatment over a period of time 103 Fig. 4-14 Surface energy analysis of PET before and after plasma treatment 104 Fig. 4-16 Surface energy analysis of ETFE before and after plasma treatment 106 Fig. 4-17 Confocal images of NIH 3T3 fibroblasts with nuclei (blue) on the pure and plasma-treated PET film after 24 hrs of culture (a) untreated (b) Ar plasma (c) Ar/H2 plasma (d) Ar/H2/N2 plasma (e) Ar/H2/O2 plasma (f) plasma grafting PEGMA 107 Fig. 4-18 The number of cell attachment on the pure and plasma-treated PET film after 24 hrs of culture 108 Fig. 4-19 Confocal images of NIH 3T3 fibroblasts with nuclei (blue) on the pure and plasma-treated ETFE film after 24 hrs of culture (a) untreated (b) Ar plasma (c) Ar/H2 plasma (d) Ar/H2/N2 plasma (e) Ar/H2/O2 plasma (f) plasma grafting PEGMA 109 Fig. 4-20 The number of cell attachment on the pure and plasma-modified ETFE after 24 hrs of culture 110

    References
    [1] Boretos JW, Eden M. (1984) Contemporary Biomaterials, Material and Host Response. Clinical Applications New Technology and Legal Aspects. Noyes Publications, Park Ridge, pp 232–233
    [2] http;//users.ox.ac.uk/~ exet0249/biomaterials.html#biomat

    [3] C. Oehr, Plasma surface modification of polymers for biomedical use, Nucl. Instrum. Methods B, 208 (2003) 40-47 

    [4] J. M. Goddard, J. H. Hotchkiss
, Polymer surface modification for the attachment of bioactive compounds, Prog Polym Sci, 32 (2007) 698-725

    [5] H. R. Lim, H. S. Baek, M. H. Lee, Y. I. Woo, D. W. Han, M. H. Han, H. K. Baik, W. S. Choi, K. D. Park, K. H. Chung, J. C. Park, Surface modification for enhancing behaviors of vascular endothelial cells onto polyurethane films by microwave-induced argon plasma, Surf Coat Tech 202 (2008) 5768-5772
    [6] T. Desmet, R. Morent, N. D. Geyter, C. Leys, E. Schacht, P. Dubruel, Nonthermal Plasma Technology as a Versatile Strategy for Polymeric Biomaterials Surface Modification: A Review, Biomacromolecules 10 (2009) 2351-2377
    [7] C. M. Chan, T. M. Ko, H. Hiraoka, Polymer surface modification by plasmas and photons, Surface Science Reports 24 (1996) 1-54
    [8] R. Morent, N. D. Geyter, T. Desmet, P. Dubruel, C. Leys, Plasma Surface Modification of Biodegradable Polymers: A Review, Plasma Process. Polym. 8 (2011) 171–190

    [9] K. S. Siow, L. Britcher, S. Kumar, H. J. Griesser
, Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization - A Review, Plasma Process. Polym. 3 (2006) 392–418
    [10] P. K. Chu, J. Y. Chen, L. P. Wang, N. Huang, Plasma-surface modification of biomaterials, Materials Science and Engineering R 36 (2002) 143–206
    [11] J. M. Grace, L. J. Gerenser, Plasma treatment of polymers, J. Dispersion Sci. Technol. 24 (2007) 305 – 341
    [12] P. K. Chu, Plasma surface treatment of artificial orthopedic and cardiovascular biomaterials, Surf. Coat. Tech. 201 (2007) 5601-5606
    [13] L. Yang, J. Chen, Y. Guo, Z. Zhang, Surface modification of a biomedical polyethylene terephthalate (PET) by air plasma, Appl. Surf. Sci. 255 (2009) 4446-4451
    [14] A. D. Mel, C. Bolvin, M. Edirisinghe, G. Hamilton, A. M. Seifalian, Development of cardiovascular bypass grafts: endothelialization and applications of nanotechnology, Expert. Rev. Cardiovasc. 6 (2008) 1259-1277
    [15] S. Krishnan, C. J. Weinman, C. K. Ober, Advances in polymers for anti-biofouling surfaces, J. Mater. Chem. 18 (2008) 3405–3413
    [16] S. Zanini, M. Orlandi, C. Colombo, E. Grimoldi, C. Riccardi, Plasma-induced graft-polymerization of polyethylene grycol acrylate on polypropylene substrates, Eur. Phys. J. D. 54 (2009) 156–164 

    [17] M. A. Cole, H. Thissen, D. Losic, N. H. Voelcker, A new approach to the immobilisation of poly(ethylene oxide) for the reduction of non-specific protein adsorption on conductive substrates, Surf. Sci. 601 (2007) 1716–1725 

    [18] D. F. Williams, Review: Tissue-biomaterial interactions, J. Mater. Sci. 22 (1987) 3421–3445
    [19] C. P. Bergmann, A. Stumpf, Dental Ceramics, Topics in Mining, Metallurgy and Materials Engineering, Springer-Verlag Berlin Heidelberg (2013)
    [20] P. Parida, A. Behera, S. C. Mishra, Classification of Biomaterials used in Medicine, IJAAS 1 (2012) 31 – 35
    [21] S. K. Jaganathan, A. Balaji, M. V. Vellayappan, A. P. Subramanian, A. A. John, M. K. Asokan, E. Supriyanto, Review: Radiation-induced surface modification of polymers for biomaterial application, J. Mater. Sci. 50 (2015) 2007-2018
    [22] A. Solouk, B. G. Cousins, H. Mirzadeh, A. M. Seifalian, Application of Plasma Surface Modification Techniques to Improve Haemocompatibility of Vascular Grafts: A Review, Biotechnol. Appl. Biochem. 58 (2011) 311-27
    [23] K. Schro ̈der, A. Meyer-Plath, D. Keller, W. Besch, G. Babucke, A. Ohl, Plasma-Induced Surface Functionalization of Polymeric Biomaterials in Ammonia Plasma, Contrib. Plasma Phys. 41 (2001) 562−572

    [24] M. Chen, P. O. Zamora , P. Som , L. A. Peña , S. Osaki, Cell attachment and biocompatibility of polytetrafluoroethylene (PTFE) treated with glow-discharge plasma of mixed ammonia and oxygen, J. Biomater. Sci. Polymer Ed 14 (2003) 917–935
    [25] Z. Ademovic, J. Wei, B. Winther-Jensen, X. Hou, P. Kingshott, Surface Modification of PET Films Using Pulsed AC Plasma Polymerisation Aimed at Preventing Protein Adsorption, Plasma Process. Polym. 2 (2005) 53–63
    [26] I. Junkar, A. Vesel, U. Cvelbar, M. Mozetic, S. Strnad, Influence of oxygen and nitrogen plasma treatment on polyethylene terephthalate (PET) polymers, Vacuum 84 (2010) 83–85
    [27] S. Jardine, J. I. B. Wilson, Plasma Surface Modification of ePTFE Vascular Grafts, Plasma Process. Polym. 2 (2005) 328–333
    [28] Z. Ma, Z. Mao, C. Gao, Surface modification and property analysis of biomedical polymers used for tissue engineering, Colloids and Surfaces B: Biointerfaces 60 (2007) 137–157
    [29] T. Jacobs, R. Morent, N. D. Geyter, P. Dubruel, C, Leys, Plasma Surface Modification of Biomedical Polymers: Influence on Cell-Material Interaction, Plasma Chem Plasma Process 32 (2012) 1039–1073
    [30] M. S. K. Chong, C. N. Lee, S. H. Teoh, Characterization of smooth muscle cells on poly(ε-caprolactone) films, Mater. Sci. Eng. C Biomimetic Supramol. Syst. 27 (2007) 309–312
    [31] Y. H. Gong, Y. B. Zhu, Y. X. Liu, Z. W. Ma, C. Y. Gao, J. C. Shen, Layer-by-layer assembly of chondroitin sulfate and collagen on aminolyzed poly(L-lactic acid) porous scaffolds to enhance their chondrogenesis, Acta Biomater. 3 (2007) 677–685
    [32] Y. P. Jiao, F. Z. Cui, Surface modification of polyester biomaterials for tissue engineering, Biomed. Mater. 2 (2007) 24-37
    [33] Y. Cao, W. Liu, G. Zhou, L. Cui, Tissue engineering and tissue repair in immunocompetent animals: tissue construction and repair, Handchir. Mikrochir. Plast. Chir. 39 (2007) 156–160
    [34] J. J. Guan, C. Y. Gao, L. X. Feng, J. C. Shen, Surface modification of polyurethane for promotion of cell adhesion and growth Surface photo-grafting with N,N-dimethylaminoethyl methacrylate and cy- tocompatibility of the modified surface, J. Mater. Sci. Mater. Med. 12 (2001) 447–452
    [35] L. Brown, T. Koerner, J. H. Horton, R. D. Oleschuk, Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents, Lab Chip 6 (2006) 66–73
    [36] E. Pamula, E. Dryzek, Structural changes in surface-modified polymers for medical applications, Acta Phys. Pol. A 113(2008)1485–1493
    [37] M. S. K. Chong, C. N. Lee, S. H. Teoh, Characterization of smooth muscle cells on poly(e-caprolactone) films, Mater. Sci. Eng. C Biomimetic. Supramol. Syst. 27 (2007) 309–312
    [38] C. S. N. Choong, D. W. Hutmacher, J. T. Triffitt, Co-culture of bone marrow fibroblasts and endothelial cells on modified polycaprolactone substrates for enhanced potentials in bone tissue engineering, Tissue Eng. 12 (2006) 2521–2531
    [39] M. J. Walzak, S. Flynn, R. Foerch, J. M. Hill, E. Karbashewski, A. Lin, M. Strobel, UV and ozone treatment of polypropylene and poly(ethylene-terephthalate), J. Adhes. Sci. Technol. 9 (1995) 1229–1248
    [40] I. Mathieson, R. H. Bradley, Improved adhesion to polymers by UV/ ozone surface oxidation, Int. J. Adhes. Adhes. 16 (1996) 29–31
    [41] I. Mathieson, R. H. Bradley, Effects of ultra-violet ozone oxidation on the surface-chemistry of polymer-films, AdV. Eng. Mater. 99 (1995) 185–191
    [42] M. R. Davidson, S. A. Mitchell, R. H. Bradley, Surface studies of low molecular weight photolysis products from UV-ozone oxidised polystyrene, Surf. Sci. 581 (2005) 169–177
    [43] S. X. Liu, J. T. Kim, S. Kim, Effect of polymer surface modification on polymer-protein interaction via hydrophilic polymer grafting, J. Food Sci. 73 (2008) 143-150.
    [44] G. V. Todorka, Surface Engineered Polymeric Biomaterials with Improved Biocontact Properties, International Journal of Polymer Science (2010) 1-22
    [45] T. Goda, R. Matsuno, T. Konno, M. Takai, K. Ishihara, Photografting of 2-methacryloyloxyethyl phosphorylcholine from polydimethylsiloxane: tunable protein repellency and lubrication property, Colloids. Surf. B. Biointerfaces 63 (2008) 64–72 

    [46] J. K. Shim, H. S. Na, Y. M. Lee, H. Huh, Y. C. Nho, Surface modification of polypropylene membranes by gamma-ray induced graft copolymerization and their solute permeation characteristics, J. Membr. Sci. 190 (2001) 215–226
    [47] K. Kato, E. Uchida, E. T. Kang, Y. Uyama, Y. Ikada, Polymer surface with graft chains, Prog. Polym. Sci. 28 (2003) 209–259
    [48] J. Deng, L. Wang, L. Liu, W. Yang, Developments and new applications of UV-induced surface graft polymerizations, Prog. Polym. Sci. 34 (2009) 156–193
    [49] H. Y. Yu, J. M. He, L. Q. Liu, X. C. He, J. S. Gu, X. W. Wei, Photoinduced graft polymerization to improve antifouling characteristics of an SMBR, J. Membr. Sci. 302 (2007) 235–242
    [50] C. M. Xing, J. P. Deng, W. T. Yang, Surface photografting polymerization of binary monomers maleic anhydride and n-butyl vinyl ether on polypropylene film I. Effects of principal factors. Polym. J. 34 (2002) 801–808
    [51] U. Edlund, M. Kallrot, A. C. Albertsson, Single-step covalent functionalization of polylactide surfaces, J. Am. Chem. Soc. 127 (2005) 8865–8871
    [52] Y. Yang, M. C. Porte, P. Marmey, A. J. El Haj, J. Amedee, C. Baquey, Covalent bonding of collagen on poly(L-lactic acid) by gamma irradiation, Nucl. Instrum. Methods Phys. Res., Sect. B: Beam Interact. Mater. Atoms 207 (2003) 165–174
    [53] E. H. Cho, S. G. Lee, J. K. Kim, Surface modification of UHMWPE with gamma-ray radiation for improving interfacial bonding strength with bone cement, Curr. Appl. Phys. 5 (2005) 475-479
    [54] A. Shojaei, R. Fathi, N. Sheikh, Adhesion modification of polyethylenes for metallization using radiation-induced grafting of vinyl monomers, Surf. Coat. Technol. 201 (2007) 7519-7529
    [55] Y. M. Shin, K. S. Kim, Y. M. Lim, Y. C. Nho, H. Shin, Modulation of spreading, proliferation, and differentiation of human mesenchymal stem cells on gelatin-immobilized poly(L-lactide-co-ε-caprolactone) substrates, Biomacromolecules 9 (2008) 1772-1781
    [56] S. D. Lee, G. H. Hsiue, C. Y. Kao, P. C. T. Chang, Artificial cornea: Surface modification of silicone rubber membrane by graft polymerization of pHEMA via glow discharge, Biomaterials 17 (1996) 587-595
    [57] G. H. Ryu, W. S. Yang, H. W. Roh, I. S. Lee, J. K. Kim, G. H. Lee, D. H. Lee, B. J. Park, M. S. Lee, J. C. Park, Plasma surface modification of poly(D,L-lactic-co-glycolic acid)(65/35) film for tissue engineering, Surf. Coat. Technol. 193 (2005) 60–64
    [58] A. Chirokov, A. Gutsol, A. Fridman, Atmospheric pressure plasma of dielectric barrier discharges, Pure Appl. Chem. 77 (2005) 487-495
    [59] V. Nehra, A. Kumar, H. K. Dwivedi, Atmospheric Non-Thermal Plasma Sources, International Journal of Engineering 2 (2006)
    [60] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, Atmospheric pressure plasmas: A review, Spectrochimica Acta Part B 61 (2006) 2-30
    [61] D. Pappas
, Status and potential of atmospheric plasma processing of materials, J. Vac. Sci. Technol. A 29 (2011) 1-17
    [62] N. D. Geyter, R. Morent, Non-Thermal Plasma Surface Modification of Biodegradable Polymers, Biomedical Science, Engineering and Technology (2012)
    [63] M. Moisan, M. D. Calzada, A. Gamero, A. Sola, Experimental investigation and characterization of the departure from local thermodynamic equilibrium along a surface-wave-sustained discharge at atmospheric pressure, J. Appl. Phys. 80 (1996) 46-52
    [64] B. Eliasson, U. Kogelschatz, Non-equilibrium volume plasma chemical processing, IEEE Trans. Plasma Sci.19 (1991) 1063-1077
    [65] G. J. Pietsch, Peculiarities of dielectric barrier discharges, Contrib. Plasma Phys. 41 (2001) 620-628
    [66] U. Kogelschatz, Industrial innovation based on fundamental physics, Plasma Sources Sci. Technol 11(2002) 1-6

    [67] U. Kogelschatz, Dielectric-barrier discharges: Their history, discharge physics, and industrial applications, Plasma Chem. Plasma Proc. 23 (2003) 1-46
    [68] A. Chirokov, A. Gutsol, A. Fridman, Atmospheric pressure plasma of dielectric barrier discharges, Pure. Appl. Chem. 77 (2005) 487-495
    [69] H. U. Lee, Y. S. Jeong, K. N. Koh, S. Y. Jeong, H. G. Kim, J. S. Bae, C. R. Cho, Contribution of power on cell adhesion using atmospheric dielectric barrier discharge (DBD) plasma system, Current Applied Physics 9 (2009) 219–223
    [70] Z. Fang, J. Lin, H. Yang, Y. Qiu, E. Kuffel, Polyethylene Terephthalate Surface Modification by Filamentary and Homogeneous Dielectric Barrier Discharges in Air
, IEEE TRANS. PLAS. SCIE. 37 (2009) 659-667
    [71] F. Leroux, C. Campagne, A. Perwuelz, L. Gengembre, Polypropylene film chemical and physical modifications by dielectric barrier discharge plasma treatment at atmospheric pressure, Journal of Colloid and Interface Science 328 (2008) 412–420
    [72] C. S. Bournet, S. Turgeon, D. Mantovani, G. Laroche, A study of atmospheric pressure plasma discharges for surface functionalization of PTFE used in biomedical applications, J. Phys. D: Appl. Phys. 39 (2006) 3461–3469
    [73] M. Nakagawa, F. Teroaka, S. Fujimoto, Y. Hamada, K. Kibayashi, J. Takahashi, Improvement of cell adhesion on poly (L-lactide) by atmospheric plasma treatment, J. Biomed. Mater. Res. A 77 (2006) 112-118
    [74] F. Teraoka, M. Nakagawa, M. Hara, Surface modification of poly (L-lactide) by atmospheric pressure plasma treatment and cell response, Dent. Mater. J. 25 (2006) 560-565
    [75] Y. Wan, X. Qu, J. Lu, C. Zhu, C. F. Zhu, L. J. Wan, J. L. Yang, J. Z. Bei, S. G. Wang, Characterization of surface property of poly (lactide-co-glycolide) after oxygen plasma treatment, Biomaterials 25 (2004) 4777–4783
    [76] J. Yang, J. Z. Bei, S. G. Wang, Improving cell affinity of poly (D, L-lactide) film modified by andydrous ammonia plasma treatment, Polym. Advan. Technol. 13 (2002) 220-226
    [77] Z. Gugala, S. Gogolewski, Attachment, growth, and activity of rat osteoblasts on polylactide membranes treated with various low-temperature radiofrequency plasmas, J. Biomed. Mater. Res. A 76 (2006) 288-299 

    [78] Y. Wan, J. Yang, J. L. Yang, J. Z. Bei, S. G. Wang, Cell adhesion on gaseous plasma modified poly-(L-lactide) surface under shear stress field, Biomaterials 24 (2003) 3757–3764 

    [79] Y. W. Yang, J. Y. Wu, C. T. Liu, G. C. Liao, H. Y. Huang, R. Q. Hsu, M. H. Chiang, J. S. Wu, Fast incorporation of primary amine group into polylactide surface for improving C2C12 cell proliferation using nitrogen-based atmospheric-pressure plasma jets, J. Biomed. Mater. Res. Part A 102 (2014) 160-169
    [80] H. U. Lee, Y. S. Jeong, S. Y. Jeong, S. Y. Park, J. S. Bae, H. G. Kim, C. R. Cho, Role of reactive gas in atmospheric plasma for cell attachment and proliferation on biocompatible poly e-caprolactone film, Appl. Surf. Sci. 254 (2008) 5700–5705
    [81] K. C. Nguyen, Plasma-Induced Graft Polymerization of Acrylic Acid onto Poly(ethylene terephthalate) Films/ Hydrophilic Modification, Journal of Science, Nat., Sci.,& Tech. (2007) 1-10
    [82] M. S. Kim, G. Khang, H. B. Lee, Gradient polymer surfaces for biomedical applications, Prog. Polym. Sci. 33 (2008) 138–164
    [83] L. Bacakova, E. Filova, M. Parizek, T. Ruml, V. Svorcik, Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants, Biotechnology Advances 29 (2011) 739–767
    [84] Q. Zhang, C. Wang, Y. Babukutty, T. Ohyama, M. Kogoma, M. K ogama
, Biocompatibility evaluation of ePTFE membrane modified with PEG in atmospheric pressure glow discharge, 2011
    [85] X. P. Zou, E. T. Kang, K. G. Neoh, Plasma-induced graft polymerization of poly(ethylene glycol) methyl ether methacrylate on poly(tetrafluoroethylene) films for reduction in protein adsorption, Surface and Coatings Technology 149 (2002) 119–128
    [86] P. Wang, K. L. Tan, E. T. Kang, K. G. Neoh, Plasma-induced immobilization of poly(ethylene glycol) onto poly(vinylidene fluoride) microporous membrane, Journal of Membrane Science 195 (2002) 103–114
    [87] B. Dong, H. Jiang, S. Manolache, A. C. Lee Wong, F. S. Denes, Plasma-Mediated Grafting of Poly(ethylene glycol) on Polyamide and Polyester Surfaces and Evaluation of Antifouling Ability of Modified Substrates, Langmuir 23 (2007) 7306-7313
    [88] V. Sharma, M. Dhayal, Govind, S. M. Shivaprasad, S. C. Jain, Surface characterization of plasma-treated and PEG-grafted PDMS for micro fluidic applications, Vacuum 81 (2007) 1094–1100
    [89] Y. Chang, C. Y. Ko, Y. J. Shih, D. Quémener, A. Deratani, T. C. Wei, D. M. Wang, J. Y. Lai, Surface grafting control of PEGylated poly(vinylidene fluoride) antifouling membrane via surface-initiated radical graft copolymerization, Journal of Membrane Science 345 (2009) 160–169
    [90] B. Dong, S. Manolache, A. C. L. Wong, F. S. Denes, Antifouling ability of polyethylene glycol of different molecular weights graftedonto polyester surfaces
by cold plasma, Polym. Bull. 66 (2011) 517–528
    [91] P. Wang, K. L. Tan, E. T. Kang, K. G. Neoh, Plasma-induced immobilization of poly(ethylene glycol) onto poly(vinylidene fluoride) microporous membrane, J. Membrane Sci. 195 (2002) 103–114 

    [92] Z. Ademovic, B. Holst, R. A. Kahn, I. Jorring, T. Brevig, J. Wei, X. Hou, B. Winter-Jensen, P. Kingshott, The method of surface PEGylation influences leukocyte adhesion and activation, J. Mater. Sci. Mater. Med. 17 (2006) 203–211 

    [93] S. Zanini, M. Orlandi, C. Colombo, E. Grimoldi, C. Riccardi, Plasma-induced graft-polymerization of polyethylene grycol acrylate on polypropylene substrates. Eur. Phys. J. D. 54 (2009) 156-164
    [94] R. A. D’Sa, B. J. Meenan
, Chemical Grafting of Poly(ethylene glycol) Methyl Ether Methacrylate onto Polymer Surfaces by Atmospheric Pressure Plasma Processing, Langmuir 26 (2010) 1894–1903
    [95] R. A. D’Sa, G. A. Burke, B. J. Meenan, Lens epithelial cell response to atmospheric pressure plasma modified poly(methylmethacrylate) surfaces, J Mater Sci: Mater Med
 (2010) 1-10
    [96] R. A. D’Sa, J. Raj, M. A. S. McMahon, D. A. McDowell, G. A. Burke, B. J. Meenan, Atmospheric pressure plasma induced grafting of poly(ethylene glycol) onto silicone elastomers for controlling biological response, Journal of Colloid and Interface Science 375 (2012) 193–202

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE