研究生: |
邱柏翰 |
---|---|
論文名稱: |
考慮整備與等候時間之可重疊機台-製程群組配置 A Machine-Process Grouping Algorithm Allowing Overlapping and Setup/Waiting Time Considerations |
指導教授: | 許棟樑 |
口試委員: |
巫木誠
范書愷 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 機台-製程群組配置 、群組技術 、跨組重疊 、整備與等候時間 、粒子群最佳化演算法 |
外文關鍵詞: | Machine-process grouping, Group Technology, Overlapping, Setup and Waiting Time, PSO |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
機台-製程群組配置係指哪幾類配方應該在哪幾組機台群進行加工。在如半導體產業這種高度產品變異的迴流生產系統中,最佳化機台與製程的分組是相當複雜的工作。本研究提出一個同時考慮組間可重疊、機台可利用率以及最小化整備與等候時間之演算法,以數學模型估計機台可利用率變動下,整體的整備與等候時間,並建立可允許重疊的機台分群方式。粒子群最佳化演算法(PSO)的技巧,被用來做為特定時段生產需求下,最小化目標式的解題工具,而模擬模型則是用來衡量以PSO所得出之群組結果的績效值。四項績效指標為產出、在製品數量、生產週期時間與達交率。將台灣晶圓代工廠的真實生產資料導入以測試結果,演算法能找出相較於不重疊分組與案例公司原始分組,績效顯著改善的群組方式。研究顯示,無論工件來到率與機台可利用率如何變動,允許跨組重疊呈現較優的績效。本研究的貢獻包含:
1. 在高度迴流與高產品變異性的製造系統中,允許跨組重疊與機台可利用率變動,建立一可動態調整的演算法,以解決複雜的機台-製程群組配置問題。
2. 為晶圓廠辨識出大幅改善績效的群組配置方式。
Machine-process grouping refers to what group of process should be processed in what group of machines. In highly reentrant high-product-variety production systems such as semiconductor manufacturing, optimization for machine-process grouping is very complex. This research proposed a grouping algorithm considering group overlapping, machine set-up and waiting times minimization, and machine availability. Mathematical models to estimate overall set-up time, waiting time under various machine availabilities and possible overlapping of machines grouping were established. Particle Swarm Optimization (PSO) technique was used to solve the minimization of a given period of production requirements. Flexsim simulation models were used to evaluate the performance of the grouping solutions generated by the PSO. The four performances indices observed are Throughput, WIP, Cycle Time and delivery rate. Real-world production data from a fab of a major Taiwanese Foundry were used to test the results. The algorithm was able to identify better grouping than non-overlapping and the company’s original grouping arrangement with significant improvements. The results indicated that regardless of the arrival rates and availability rates, allowing grouping overlap showed better performances. Contributions of this research include:
1. Establishing a dynamically adjustable algorithm to solve a complex machine-process grouping problem in highly re-entrant and high-product-variety fabrications allowing overlapping and availability variations.
2. Identifying a much improved grouping arrangement for the fab.
1. Cheng C.H., Goh C.H., and Lee A., “Design group technology manufacturing systems using heuristics branching rules”, Computers & Industrial Engineering, 40, 117-131, 2001.
2. Connors, D.P., Feigin, G.E., and Yao, D.D., “A Queueing Network Model for Semiconductor Manufacturing”, IEEE Transactions on Semiconductor Manufacturing, Vol. 9, No. 3, pp.412-427, 1996.
3. Dedy, S., “Machine-Process Grouping Considering Setup and Waiting Times Using Particle Swarm Optimization”, Thesis, National Tsing Hua University, Taiwan, 2009.
4. Duran, O., N. Rodriguez, L. A. Consalter, “A PSO-based clustering algorithm for manufacturing cell design”, Workshop on Knowledge Discovery and Data Mining, 2008.
5. Gaing Z.L., Discrete particle swarm optimization algorithm for unit commitment, IEEE Power Engineering Society General Meeting, Vol.1, pp.13-17, 2003.
6. Hu, X., Eberhart, R., and Shi., Y., “Swarm intelligence for permutation optimization: a case study on n-queens problem”, Proceedings of the IEEE Swarm Intelligence Symposium, Indianapolis, USA, pp.243-246, 2003.
7. J. Kennedy, R.C. Eberhart, “Particle swarm optimization”, Proceedings of the IEEE International Conference on Neural Networks, pp.1942-1948, 1995.
8. J. Kennedy, R.C., Eberhart, “A discrete binary version of the particle swarm algorithm”, Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Piscataway, NJ, pp.4104-4108, 1997.
9. King, J.R., “Machine-component grouping in production flow analysis: an approach using a rank order clustering algorithm”. International Journal of Production Research, Vol. 18, pp.213-232, 1980.
10. McAuley, J., “Machine grouping for efficient production”, The Production Engineer, pp.53-57, 1972.
11. Mitrofanov, The scientific principles of group technology, National Lending Library Translation, Boston Spa, Yorks, UK, 1966.
12. N. Wu & G. Salvendy, “An efficient heuristic for the design of cellular manufacturing systems with multiple identical machines”, International Journal of Production Research, Vol.37, No.15, pp.3519-3540. 1999.
13. O.F. Offodile, A. Mehrez & J. Grznat, “Cellular manufacturing: a taxonomic review framework”, Journal of Manufacturing Systems, Vol.13, No.3, 1994.
14. S. Zolfaghari & M. Liang, “An objective-guided ortho-synapse Hopfield network approach to machine grouping problems”, International Journal of Production Research, Vol.35, No.10, pp.2773-2792. 1997.
15. Wemmerlov U. and Hyer N.L., Procedures for the part family machine group identification problem in cellular manufacturing, Journal of Operations Management, Vol.6, pp.125-147, 1986.
16. 王良吉,應用PSO演算法於分類法則之探勘,國立高雄第一科技大學資訊管理學系,碩士論文,2007。
17. 尹邦嚴、柳依旻、江元傑、黃冠哲、陳映良,「粒子族群最佳化的視覺化及開發工具」,國立暨南國際大學資訊管理學系,銘傳大學2005國際學術研討會,2005。
18. 吳家駒,「晶圓代工廠機台組合決策」,國立交通大學工業工程與管理學系,碩士論文,1999。
19. 林時龍,「晶圓廠短期動態機台調整機制」,國立交通大學工業工程與管理學系,碩士論文,2001。
20. 梁宇帆,「薄膜電晶體陣列廠機台配置機制之構建」,國立交通大學工業工程與管理學系,碩士論文,2006。
21. 陳溪川,「晶圓代工廠產品組合不確定之機台決策機制」,國立交通大學工業工程與管理學系,碩士論文,2000。
22. 鄒錦銘,「以社會網路分析法進行彈性製造系統機台分群之研究」,國立台灣科技大學,碩士論文,2007。
23. 鄭兆恩,「機台/製程群組方法之研究」,國立清華大學工業工程與工程管理學系,碩士論文,2008。
24. 鄭富州,「混合型資料分類法在單元製造系統上的應用」,中原大學應用數學系,碩士論文,2003。
25. 劉寶義,「結合ACO與PSO演算法求解動態單元形成問題」,大同大學資訊經營學系,碩士論文,2010。
26. 賴彥銘,「應用群聚技術求解製造單元形成問題」,大葉大學工業工程學系,碩士論文,2003。