簡易檢索 / 詳目顯示

研究生: 陳翰芸
Han Yun Chen
論文名稱: 在超凸度量空間上的兩個大中取小不等式
Two Minimax Inequality Theorems in Hyperconvex Metric Spaces
指導教授: 張東輝
陳啟銘
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 16
中文關鍵詞: 超凸度量空間gKKM集族固定點定理大中取小不等式
外文關鍵詞: hyperconvex metric space, gKKM(X,Y), fixed point theorem, minimax inequality theorem
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,第一部分我們用到J.C.Jeng、H.C.Hsu和Y.Y.Hung所發表論文中的觀念,在超凸度量空間上定義廣義的 gKKM 函數以及 gKKM(X,Y) 集族,然而我們在 gKKM(X,Y) 集族上不需要緊緻條件就可以得到固定點定理。第二部分我們在 gKKM(X,Y)集族和Φ函數上證明了兩個大中取小不等式的定理。


    In this work, we first use the conception of J. C. Jeng, H. C. Hsu and Y. Y. Huang [6] to define the generalized gKKM mapping and the class gKKM(X,Y) in hyperconvex metric spaces, and then we get a fixed point theorem on this family without compactness assumption. Next, we establish two minimax inequalities for the family gKKM(X,Y) and the Φ-mapping.

    CONTENTS 1. INTRODUCTION--------------------------------------------1 2. PRELIMINARIES-------------------------------------------2 3. MAIN RESULTS--------------------------------------------8 4. REFERENCES---------------------------------------------15

    4. References
    [1] A. Amini, M. Fakhar, J. Zafarani, KKM mappings in
    metric spaces, Nonlinear Analysis. 60(2005), 1045-1052.
    [2] N. Aronszajn, P. Panitchpakdi, Extensions of uniformly
    continuous transformations and hyperconvex metric
    spaces, Pacific J. Math. 6(1956), 405-439.
    [3] T. H. Chang, C. M. Chen, H. C. Huang, Generalized gKKM
    theorems on hyperconvex metric spaces with application,
    Nonlinear Anal. In press.
    [4] T. H. Chang, C. L. Yen, KKM property and fixed point
    theorems, J. Math. Anal. Appl. 203(1996), 224-235.
    [5] K. Fan, A generalization of Tychonoff’s fixed point
    theorem, Math. Ann. 142(1961), 305-310.
    [6] J. C. Jeng, H. C. Hsu, Y. Y. Huang, Fixed point theorem
    for multifunctions having KKM property on almost
    convex sets. J. Math. Anal. Appl. 319(2006), 187-198.
    [7] M. A. Khamsi, KKM and Ky Fan Theorems in hyperconvex
    metric spaces, J. Math. Anal. Appl. 204(1996), 298-306.
    [8] W. A. Kirk, B. Sims, G. X. Z. Yuan, The Knaster-
    Kurnatioaski and Mazurkiewicz Theory in hyperconvex
    metric spaces and some of its applications, Nonlinear
    Anal. 39(2000), 611-627.
    [9] B. Knaster, C. Kurnatoaski, S. Mazurkiewicz, Ein Beweis
    des Fixpunksatzes fur n-dimexsionale simplexe, Fund.
    Math. 14(1929), 132-137.
    [10] L. J. Lin, Applications of a fixed point theorems in G-
    convex spaces, Nonlinear Anal. 46(2001), 601-608.
    [11] L. J. Lin, System of coincidence theorems with
    applications, J. Math . Anal. Appl. 285(2003), 408-418.
    [12] G. Q. Tian, Generalizations of KKM theorem and Ky Fan
    minimax inequality with applications to maximal
    elements, price equalibrium and complementarity, J.
    Math. Anal. Appl. 170(1992), 457-471.
    [13] X. Wu, B. Thompson, G. X. Yuan, Approximate selection
    theorems on H-spaces with applications J.Appl. Anal. 9
    (2003), 249-260.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE